Skip to main content

Modelling Autistic Neurons with Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Translational Anatomy and Cell Biology of Autism Spectrum Disorder

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 224))

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects more than 1% of children per current estimates. It has been characterised by the following two core behavioural phenotypes: (1) deficits in social interaction and communication and (2) repetitive behaviours, restricted interests and activities. Due to the complex nature of ASD, there are currently no effective treatments. The reason behind this is the clinical and genetic heterogeneity between affected individuals on the one hand and the lack of understanding of the underpinning pathophysiological mechanisms on the other hand. Induced pluripotent stem cells (iPSCs) are reprogrammed stem cells from adult cells. These have the capacity to self-renew and differentiate into any type of cells in the body. Therefore, human iPSCs provide a unique opportunity to study the human cellular and molecular phenotypes associated with ASD. Here, we systematically review various ASD variants and co-morbid diseases modelled using human iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T, Izpisúa Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382

    Article  CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  • Amps K, Andrews PW et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144

    Article  CAS  PubMed  Google Scholar 

  • Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6:e25255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antar LN, Dictenberg JB, Plociniak M et al (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359

    Article  CAS  PubMed  Google Scholar 

  • Asperger H (1944) Die “Autistischen Psychopathen” im Kindesalter. Arch Psychiatr Nervenkr 177:76e137

    Google Scholar 

  • Bader PL, Faizi M, Kim LH et al (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci USA 108:15432–15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudouin SJ (2013) Mouse models of autism: a common basis for syndromic and non syndromic autisms? Médecine Sci M/S 29:121–123

    Article  Google Scholar 

  • Bhattacharyya A, McMillan E, Wallace K et al (2008) Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev 17:107–117

    Article  CAS  PubMed  Google Scholar 

  • Bidinosti M, Botta P, Krüttner S et al (2016) CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351:1199–1203

    Article  CAS  PubMed  Google Scholar 

  • Boccuto L, Lauri M, Sarasua SM et al (2013) Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet 21:310–316

    Article  CAS  PubMed  Google Scholar 

  • Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234

    Article  CAS  PubMed  Google Scholar 

  • Broccoli V, Giannelli SG, Mazzara PG (2014) Modeling physiological and pathological human neurogenesis in the dish. Front Neurosci 8:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Castren M, Tervonen T, Karkkainen V et al (2005) Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci 102:17834–17839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437. doi:10.1016/j.neuron.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  • Cheung AYL, Horvath LM, Grafodatskaya D et al (2011) Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20:2103–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocks G, Curran S, Gami P et al (2014) The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology (Berl) 231:1079–1088

    Article  CAS  Google Scholar 

  • Comery TA, Harris JB, Willems PJ et al (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantino JN (2011) The quantitative nature of autistic social impairment. Pediatr Res 69:55R–62R

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook D, Sanchez-Carbente Mdel R, Lachance C et al (2011) Fragile X related protein 1 clusters with ribosomes and messenger RNAs at a subset of dendritic spines in the mouse hippocampus. PLoS One 6:e26120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costales JL, Kolevzon A (2015) Phelan-McDermid syndrome and SHANK3: implications for treatment. Neurotherapeutics 12:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delépine C, Meziane H, Nectoux J et al (2016) Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum Mol Genet 25:146–157

    Article  PubMed  Google Scholar 

  • Developmental Disabilities Monitoring Network, 14 sites, United States 2008 Autism and developmental disabilities monitoring network surveillance year 2008 principal investigators. Centers for Disease Control and Prevention

    Google Scholar 

  • Djuric U, Cheung AYL, Zhang W et al (2015) MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis 76:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doers ME, Musser MT, Nichol R et al (2014) iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev 23:1777–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowey SN, Huang X, Chou B-K et al (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7:2013–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    Article  CAS  PubMed  Google Scholar 

  • Eigenmann DE, Xue G, Kim KS et al (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsabbagh M, Divan G, Koh Y-J et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5:160–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman D, Banerjee A, Sur M (2016) Developmental dynamics of Rett syndrome. Neural Plast 2016:6154080

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaugler T, Klei L, Sanders SJ et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46:881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier J, Spiegelman D, Piton A et al (2009) Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 150B:421–424

    Article  CAS  PubMed  Google Scholar 

  • González F, Boué S, Izpisúa Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 12:231–242

    Article  PubMed  Google Scholar 

  • Griesi-Oliveira K, Acab A, Gupta AR et al (2015) Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry 20:1350–1365

    Article  CAS  PubMed  Google Scholar 

  • Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ et al (2014) Physiological characterisation of Human iPS-derived dopaminergic neurons. PLoS One 9:e87388

    Article  PubMed  PubMed Central  Google Scholar 

  • Huguet G, Ey E, Bourgeron T (2013) The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 14:191–213

    Article  CAS  PubMed  Google Scholar 

  • Irwin SA, Patel B, Idupulapati M et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167

    Article  CAS  PubMed  Google Scholar 

  • Kazdoba TM, Leach PT, Silverman JL, Crawley JN (2014) Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable rare Dis Res 3:118–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim K-Y, Hysolli E, Park I-H (2011) Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci 108:14169–14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolevzon A, Cai G, Soorya L et al (2011) Analysis of a purported SHANK3 mutation in a boy with autism: clinical impact of rare variant research in neurodevelopmental disabilities. Brain Res 1380:98–105

    Article  CAS  PubMed  Google Scholar 

  • Krey JF, Paşca SP, Shcheglovitov A et al (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci 16:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari D, Swaroop M, Southall N et al (2015) High-throughput screening to identify compounds that increase Fragile X mental retardation protein expression in neural stem cells differentiated from Fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med 4:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Renner M, Martin C-A et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MA, Knoblich JA, Hachitanda Y et al (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  Google Scholar 

  • Marchetto MCN, Carromeu C, Acab A et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani J, Coppola G, Zhang P et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroof AM, Keros S, Tyson JA et al (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-Taylor K, Nisler BS, Taapken SM et al (2011) Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29:488–491

    Article  CAS  PubMed  Google Scholar 

  • Moessner R, Marshall CR, Sutcliffe JS et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nageshappa S, Carromeu C, Trujillo CA et al (2016) Altered neuronal network and rescue in a human MECP2 duplication model. Mol Psychiatry 21:178–188

    Article  CAS  PubMed  Google Scholar 

  • Napolitano C, Antzelevitch C (2011) Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res 108:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemirovsky SI, Córdoba M, Zaiat JJ et al (2015) Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder. PLoS One 10:e0116358

    Article  PubMed  PubMed Central  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  • Park C-Y, Halevy T, Lee DR et al (2015) Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep 13:234–241

    Article  CAS  PubMed  Google Scholar 

  • Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Pembrey ME, Barnicoat AJ, Carmichael B et al (2001) An assessment of screening strategies for fragile X syndrome in the UK. Health Technol Assess 5:1–95

    Article  CAS  PubMed  Google Scholar 

  • Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2:186–201

    CAS  PubMed  Google Scholar 

  • Pilpel Y, Kolleker A, Berberich S et al (2009) Synaptic ionotropic glutamate receptors and plasticity are developmentally altered in the CA1 field of Fmr1 knockout mice. J Physiol 587:787–804

    Article  CAS  PubMed  Google Scholar 

  • Ramocki MB, Peters SU, Tavyev YJ et al (2009) Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol 66:771–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renieri A, Meloni I, Longo I et al (2003) Rett syndrome: the complex nature of a monogenic disease. J Mol Med (Berl) 81:346–354

    Article  Google Scholar 

  • Ronald A, Happé F, Price TS et al (2006) Phenotypic and genetic overlap between autistic traits at the extremes of the general population. J Am Acad Child Adolesc Psychiatry 45:1206–1214

    Article  PubMed  Google Scholar 

  • Santoro MR, Bray SM, Warren ST (2012) Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol Mech Dis 7:219–245

    Article  CAS  Google Scholar 

  • Shcheglovitov A, Shcheglovitova O, Yazawa M et al (2013) SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503:267–271

    CAS  PubMed  Google Scholar 

  • Sheridan SD, Theriault KM, Reis SA et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6:e26203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Kirwan P, Livesey FJ (2012a) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Kirwan P, Smith J et al (2012b) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15:477–486

    Article  CAS  PubMed  Google Scholar 

  • Skuse DH, Mandy W, Steer C et al (2009) Social communication competence and functional adaptation in a general population of children: preliminary evidence for sex-by-verbal IQ differential risk. J Am Acad Child Adolesc Psychiatry 48:128–137

    Article  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  • Sterneckert JL, Reinhardt P, Schöler HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15:625–639

    Article  CAS  PubMed  Google Scholar 

  • Tabet R, Moutin E, Becker JAJ et al (2016) Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc Natl Acad Sci 201522631

    Google Scholar 

  • Tai Y, Feng S, Ge R et al (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121:2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Zhou L, Wagner AM et al (2013) Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res 11:743–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telias M, Kuznitsov-Yanovsky L, Segal M, Ben-Yosef D (2015) Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci 35:15295–15306

    Article  CAS  PubMed  Google Scholar 

  • Toro R, Konyukh M, Delorme R et al (2010) Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 26:363–372

    Article  CAS  PubMed  Google Scholar 

  • Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6:407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandewalle J, Van Esch H, Govaerts K et al (2009) Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet 85:809–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verpelli C, Carlessi L, Bechi G et al (2013) Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells. Front Cell Neurosci 7:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicidomini C, Ponzoni L, Lim D, et al (2016) Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry

    Google Scholar 

  • Waga C, Okamoto N, Ondo Y et al (2011) Novel variants of the SHANK3 gene in Japanese autistic patients with severe delayed speech development. Psychiatr Genet 21:208–211

    Article  PubMed  Google Scholar 

  • Wainger BJ, Kiskinis E, Mellin C et al (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang B, Pan N et al (2015) Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Sci Rep 5:9232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  • Williams EC, Zhong X, Mohamed A et al (2014) Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 23:2968–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Danko T, Botelho SC et al (2016) Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 352:aaf2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalfa F, Adinolfi S, Napoli I et al (2005) Fragile X Mental Retardation Protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 280:33403–33410

    Article  CAS  PubMed  Google Scholar 

  • Zapata AG, Alfaro D, García-Ceca J (2012) Biology of stem cells: the role of microenvironments. Adv Exp Med Biol 741:135–151

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Guo M, Martins-Taylor K et al (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One 5:e11853

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sloan SA, Clarke LE et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Du W, Zhou K et al (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11:741–743

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Benda C, Dunzinger S et al (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London and by EU-AIMS, which receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no.115300, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (P7/2007–2013), from EFPIA companies in kind contribution and from Autism Speaks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Verpelli or Jack Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kathuria, A., Sala, C., Verpelli, C., Price, J. (2017). Modelling Autistic Neurons with Induced Pluripotent Stem Cells. In: Schmeisser, M., Boeckers, T. (eds) Translational Anatomy and Cell Biology of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-52498-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52498-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52496-2

  • Online ISBN: 978-3-319-52498-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics