Skip to main content

Swelling of Coating Films

  • Chapter
  • First Online:
Protective Coatings

Abstract

The factors and theoretical approaches to equilibrium swelling of cross-linked polymer systems were analyzed in relation to the application of the equilibrium swelling method for characterization of structure of cross-linked coating films. Special attention was paid to the possibility of characterizing the cross-link density and its changes during film formation. For swelling of highly cross-linked networks (coating films) in good solvents, the finite extensibility of network chains was respected. The effect of adhesion of the film to the substrate was also considered. If equilibrium swelling method (swell test) is used for characterizing changes in cross-link density of drying (reacting) films, the results are often not meaningful for several reasons such as (a) dependence of interaction parameter on conversion; (b) if the sample is in its glassy state and contains unreacted functional groups, increase of conversion occurs during the test when swelling induces transition from the glassy to the rubbery state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    g = χ, if both quantities are concentration independent; otherwise, the concentration dependences can be recalculated; in the examples below, we will be using the concentration-dependent parameter χ, where the concentration dependence will be related to the chemical potentials of the solvent.

References

  1. Dušek, K., Dušková-Smrčková, M.: Network structure formation during crosslinking of organic coating systems. Prog. Polym. Sci. 25, 1215–1260 (2000). doi:10.1016/S0079-6700(00)00028-9

    Article  Google Scholar 

  2. Dušek, K., Dušková-Smrčková, M.: Polymer networks. In: Matyjaszewski, K., Gnanou, P., Leibler, L. (eds.) Precise Synthesis, Materials Properties, Applications, Structure-Property Correlation and Characterization Techniques, vol. 3, pp. 1687–1730. Wiley-VCH, Weinheim (2007). ISBN 978-3-527-31446-1

    Google Scholar 

  3. Dušek, K.: Network formation in curing of epoxy resins. Adv. Polym. Sci. 78, 1–59 (1986). doi:10.1007/BFb0035356

    Article  Google Scholar 

  4. Dušek, K., Dušková-Smrčková, M., Huybrechts, J., Ďuračková, A.: Polymer networks from preformed precursors having molecular weight and group reactivity distributions. Theory and application. Macromolecules. 46, 2767–2784 (2013). doi:10.1021/ma3000187

    Article  Google Scholar 

  5. Dušková-Smrčková, M., Valentová, H., Ďuračková, A., Dušek, K.: Effect of dilution on structure and properties of polyurethane networks. Pregel and postgel cyclization and phase separation. Macromolecules. 43, 6450–6462 (2010). doi:10.1021/ma100626d

    Article  Google Scholar 

  6. Flory, P.J., Rehner, J.: Statistical mechanics of cross-linked polymer networks. II Swelling. J. Chem. Phys. 11, 521–526 (1943). doi:10.1063/1.1723792

    Article  Google Scholar 

  7. Flory, P.J.: Statistical mechanics of swelling of network structures. J. Chem. Phys. 18, 108–111 (1950). doi:10.1063/1.1747424

    Article  Google Scholar 

  8. Flory, P.J. Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953). ISBN-13 978-0-8014-0134-3

    Google Scholar 

  9. Erman, B., Mark, J.E.: Structures and Properties of Rubberlike Networks. Oxford University Press. New York (1997). ISBN: 9780195082371

    Google Scholar 

  10. Dušek, K., Choukourov, A., Dušková-Smrčková, M., Biedermann, H.: Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films. Macromolecules. 47, 4417–4427 (2014). doi:10.1021/ma5006217

    Article  Google Scholar 

  11. Dušek, K., Dušková-Smrčková, M., Šomvársky, J.: Effect of constraints on swelling of polymer networks. Macromol. Symp. 358, 120–127 (2015). doi:10.1002/masy.201500025

    Article  Google Scholar 

  12. Edwards, S.F., Vilgis, T.: The effects of entanglements in rubber elasticity. Polymer. 27, 483–492 (1986). doi:10.1016/0032-3861(86)90231-4

    Article  Google Scholar 

  13. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 152–169 (2006). doi:10.5254/1.3547924

    Article  Google Scholar 

  14. Ben Amar, M., Goriely, A.: Growth and instability in elastic tissues. J. Mech. Phys. Solids. 53, 2284–2319 (2005). doi:10.1016/j.jmps.2005.04.008

    Article  Google Scholar 

  15. Dervaux, J., Ben Amar, M.: Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys. 3, 311–332 (2012). doi:10.1146/annurev-conmatphys-062910-140436

    Article  Google Scholar 

  16. Li, B., Cao, Y.-P., Feng, X.-Q., Gao, H.: Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter. 8, 5728 (2012). doi:10.1039/C2SM00011C

    Article  Google Scholar 

  17. Singamaneni, S., Tsukruk, V.V.: Buckling instabilities in periodic composite polymeric materials. Soft Matter. 6, 5681–5692 (2010). doi:10.1039/C0SM00374C

    Article  Google Scholar 

  18. Hansen, C.: Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, Boca Raton, FL (2007). ISBN 978-0-8493-7248-3

    Google Scholar 

  19. Mohite, L.V., Juvekar, V.A.: Quantification of thermodynamics of aqueous solutions of poly(ethylene glycols). Role of calorimetry. Fluid Phase Equilib. 278, 41–53 (2009). doi:10.1016/j.fluid.2009.01.003

    Article  Google Scholar 

  20. Dušek, K.: Quasichemical equilibrium approach to crosslinked polymer solutions. J. Polym. Sci., C, Polym. Symp. 39, 83–106 (1972)

    Google Scholar 

  21. Dušková-Smrčková, M., Dušek, K., Vlasák, P.: Solvent activity changes and phase separation during crosslinking of coating films. Macromol. Symp. 198, 259–270 (2003). doi:10.1002/masy.200350822

    Article  Google Scholar 

  22. Gregorovich, B.V., Adamsons, K., Lin, L.: Scratch and mar resistance and other mechanical properties as a function of chemical nature for automotive refinish coatings. Prog. Org. Coat. 43, 175–177 (2001). doi:10.1016/S0300-9440(01)00187-4

    Article  Google Scholar 

  23. Hill, L.W., Wicks Jr., Z.W.: Design considerations for high solids coatings. Prog. Org. Coat. 10, 55–89 (1982). doi:10.1016/0300-9440(82)80006-4

    Article  Google Scholar 

  24. Hill, L.W.: Structure property relationships of thermoset coatings. J. Coat. Technol. 64, 28–42 (1992)

    Google Scholar 

  25. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 41, 389–412 (1993). doi:10.1016/0022-5096(93)90013-6

    Article  Google Scholar 

  26. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000). doi:10.5254/1.3547602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Dušek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dušek, K., Dušková-Smrčková, M., Brent Douglas, C. (2017). Swelling of Coating Films. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_12

Download citation

Publish with us

Policies and ethics