Skip to main content

Geothermal Effects for BOD Removal in Horizontal Subsurface Flow Constructed Wetlands: A Numerical Approach

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 681))

Abstract

A simplified numerical approach is presented for the simultaneous groundwater flow, geothermal energy (heat) transport and contaminant transport and removal in shallow unconfined aquifers. Emphasis is given to Biochemical Oxygen Demand (BOD) removal in Horizontal Subsurface Flow Constructed Wetlands (HSF CW), under non-isothermal conditions. The system of the governing non-linear partial differential equations is treated numerically by using the family computer code Visual MODFLOW. In a numerical example, where BOD is injected in entering geothermal water, the so-resulted computational results are compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)

    MATH  Google Scholar 

  2. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Klouwer, Boston (1990)

    Book  MATH  Google Scholar 

  3. Molson, J.W., Frind, E.O., Palmer, C.D.: Thermal energy storage in an unconfined aquifer: 2. Model development, validation, and application. Water Resour. Res. 28(10), 2857–2867 (1992)

    Google Scholar 

  4. Lee, K.S.: A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies 3(6), 1320–1334 (2010)

    Article  Google Scholar 

  5. Lund, J.W., Boyd, T.L.: Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60, 66–93 (2016)

    Article  Google Scholar 

  6. Burow, K.R., Constantz, J., Fujii, R.: Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland. Groundwater 43(4), 545–556 (2005)

    Article  Google Scholar 

  7. Vafai, K.: Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  8. Kadlec, R.H., Wallace, S.: Treatment Wetlands, 2nd edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  9. Vymazal, J., Kröpfelová, L.: Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Springer, Berlin (2008)

    Book  Google Scholar 

  10. Liolios, K.A., Moutsopoulos, K.N., Tsihrintzis, V.A.: Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands. Chem. Env. J. 200–202, 681–693 (2012)

    Google Scholar 

  11. Liolios, K., Tsihrintzis, V., Moutsopoulos, K., Georgiev, I., Georgiev, K.: A computational approach for remediation procedures in horizontal subsurface flow constructed wetlands. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) LNCS, vol. 7116, pp. 299–306. Springer, Berlin (2012)

    Google Scholar 

  12. Ma, R., Zheng, C.: Effects of density and viscosity in modeling heat as a groundwater tracer. Groundwater 48(3), 380–389 (2010)

    Article  Google Scholar 

  13. Twidell, J., Weir, T.: Renewable Energy Resources, 3rd edn. Routledge, New York (2015)

    Google Scholar 

  14. Postelnicu, A.: Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Trans. 43(6), 595–602 (2007)

    Article  Google Scholar 

  15. Moorthy, M.B.K., Kannan, T., Senthilvadivu, K.: Soret and Dufour effects on natural convection heat and mass transfer flow past a horizontal surface in a porous medium with variable viscosity. WSEAs Trans. Heat Mass Trans. 3(8), 121–129 (2013)

    Google Scholar 

  16. McKibbin, R.: Modeling heat and mass transport processes in geothermal systems. In: Vafai, K. (ed.) Handbook of Porous Media. Taylor and Francis, New York (2005)

    Google Scholar 

  17. Waterloo Hydrogeologic Inc.: Visual MODFLOW v. 4.2. Users Manual. U.S. Geological Survey, Virginia, USA (2006)

    Google Scholar 

  18. Akratos, C.S., Tsihrintzis, V.A.: Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. J. 29(2), 173–191 (2007)

    Article  Google Scholar 

  19. Zheng, C., Bennett, G.D.: Applied Contaminant Transport Modelling, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  20. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Dagan, G.: Some aspects of heat and mass transfer in porous media. Fund. Trans. Phen. Por. Med. 55–64 (1972)

    Google Scholar 

  22. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  23. De Marsily, G.: Quantitative Hydrogeology. Academic Press, London (1986)

    Google Scholar 

  24. Tanner, C.C., Clayton, J.S., Upsdell, M.P.: Effect of loading rate and planting on treatment of daily farm wastewaters in constructed wetlands-I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Res. 29, 17–26 (1995)

    Article  Google Scholar 

  25. Anderson, M.P., Woessner, W.W.: Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press, London (2002)

    Google Scholar 

  26. Anderson, M.P.: Heat as a ground water tracer. Groundwater 43(6), 951–968 (2005)

    Article  Google Scholar 

  27. Domenico, P.A., Schwartz, F.W.: Physical and Chemical Hydrogeology, 2nd edn. Wiley, New York (1998)

    Google Scholar 

  28. Lazarov, R.D., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ewing, R., Lazarov, R., Lin, Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Num. Meth. Part. Dif. Eqs. 16(3), 285–311 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simunek, J., Jacques, D., Langergraber, G., Bradford, S.A., Šejna, M., van Genuchten, M.T.: Numerical modeling of contaminant transport using HYDRUS and its specialized modules. J. Indian Inst. Sci. 93(2), 265–284 (2013)

    Google Scholar 

  31. Langergraber, G., Giraldi, D., Mena, J., Meyer, D., Peña, M., Toscano, A., Brovelli, A., Korkusuz, E.A.: Recent developments in numerical modelling of subsurface flow constructed wetlands. Sci. Tot. Environ. 407(13), 3931–3943 (2009)

    Article  Google Scholar 

  32. Kipp, K.L.: HST3D; A Computer Code for Simulation of Heat and Solute Transport in Three-Dimensional Ground-Water Glow Systems (No. 86-4095). U.S. Geological Survey, Denver, Colorado (1987)

    Google Scholar 

  33. Voss, C.I.: A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Ground-Water Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport (No. 84-4369). U.S. Geological Survey, Denver, Colorado (1984)

    Google Scholar 

  34. Langevin, C.D., Thorne Jr., D.T., Dausman, A.M., Sukop, M.C., Guo, W.: SEAWAT v. 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport (No. 6-A22). U.S. Geological Survey, Florida Integrated Science Center (2008)

    Google Scholar 

  35. Hecht-Méndez, J., Molina-Giraldo, N., Blum, P., Bayer, P.: Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Groundwater 48(5), 741–756 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research is partly supported by the FP7 project AComIn: Advanced Computing for Innovation, grant 316087 and Bulgarian NSF Grants, DMU 03-62 and DFNI I-01/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Liolios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liolios, K., Tsihrintzis, V., Georgiev, K., Georgiev, I. (2017). Geothermal Effects for BOD Removal in Horizontal Subsurface Flow Constructed Wetlands: A Numerical Approach. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol 681. Springer, Cham. https://doi.org/10.1007/978-3-319-49544-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49544-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49543-9

  • Online ISBN: 978-3-319-49544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics