Skip to main content

Music Outlier Detection Using Multiple Sequence Alignment and Independent Ensembles

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9939))

Included in the following conference series:

Abstract

The automated retrieval of related music documents, such as cover songs or folk melodies belonging to the same tune, has been an important task in the field of Music Information Retrieval (MIR). Yet outlier detection, the process of identifying those documents that deviate significantly from the norm, has remained a rather unexplored topic. Pairwise comparison of music sequences (e.g. chord transcriptions, melodies), from which outlier detection can potentially emerge, has been always in the center of MIR research but the connection has remained uninvestigated. In this paper we firstly argue that for the analysis of musical collections of sequential data, outlier detection can benefit immensely from the advantages of Multiple Sequence Alignment (MSA). We show that certain MSA-based similarity methods can better separate inliers and outliers than the typical similarity based on pairwise comparisons. Secondly, aiming towards an unsupervised outlier detection method that is data-driven and robust enough to be generalizable across different music datasets, we show that ensemble approaches using an entropy-based diversity measure can outperform supervised alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.chordify.net.

  2. 2.

    www.ultimate-guitar.com.

  3. 3.

    www.whosampled.com.

  4. 4.

    www.midomi.com.

  5. 5.

    www.projects.science.uu.nl/COGITCH/outlier.

  6. 6.

    www.secondhandsongs.com.

  7. 7.

    www.echonest.com.

  8. 8.

    www.isophonics.net/content/reference-annotations-beatles.

References

  1. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, pp. 591–596 (2011)

    Google Scholar 

  2. Bountouridis, D., Van Balen, J.: The cover song variation dataset. In: The International Workshop on Folk Music Analysis (2014)

    Google Scholar 

  3. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role of source dependence. Proc. VLDB Endow. 2(1), 550–561 (2009)

    Article  Google Scholar 

  4. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)

    Article  Google Scholar 

  5. Eddy, S.R.: Accelerated profile HMM searches. PLoS Comput. Biol. 7(10), e1002195 (2011)

    Article  MathSciNet  Google Scholar 

  6. Aggarwal, C.C.: Outlier analysis. In: Aggarwal, C.C. (ed.) Data Mining, pp. 237–263. Springer, New York (2015)

    Google Scholar 

  7. Flexer, A., Pampalk, E., Widmer, G.: Novelty detection based on spectral similarity of songs. In: ISMIR, pp. 260–263 (2005)

    Google Scholar 

  8. Flexer, A., Schnitzer, D.: Using mutual proximity for novelty detection in audio music similarity. In: Proceedings of 6th International Workshop on Machine Learning and Music (MML), pp. 31–34. Citeseer (2013)

    Google Scholar 

  9. Freitas, C.O.A., Carvalho, J.M., Oliveira, J.J., Aires, S.B.K., Sabourin, R.: Confusion matrix disagreement for multiple classifiers. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 387–396. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76725-1_41

    Chapter  Google Scholar 

  10. Greene, D., Tsymbal, A., Bolshakova, N., Cunningham, P.: Ensemble clustering in medical diagnostics. In: 17th IEEE Symposium on Computer-Based Medical Systems, CBMS 2004, Proceedings, pp. 576–581. IEEE (2004)

    Google Scholar 

  11. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann. Math. Stat. 21, 27–58 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)

    Article  Google Scholar 

  13. Hansen, L.K., L.-Schioler, T., Petersen, K.B., Arenas-Garcia, J., Larsen, J., Jensen, S.H.: Learning and clean-up in a large scale music database. In: 2007 15th European Signal Processing Conference, pp. 946–950. IEEE (2007)

    Google Scholar 

  14. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Netherlands (1980)

    Book  MATH  Google Scholar 

  15. Jehl, P., Sievers, F., Higgins, D.G.: OD-seq: outlier detection in multiple sequence alignments. BMC Bioinf. 16(1), 269 (2015)

    Article  Google Scholar 

  16. Livshin, A., Rodet, X.: Purging musical instrument sample databases using automatic musical instrument recognition methods. IEEE Trans. Audio Speech Lang. Process. 17(5), 1046–1051 (2009)

    Article  Google Scholar 

  17. Lukashevich, H., Dittmar, C.: Improving GMM classifiers by preliminary one-class svm outlier detection: application to automatic music mood estimation. In: Locarek-Junge, H., Weihs, C. (eds.) Classification as a Tool for Research, pp. 775–782. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Macrae, R., Dixon, S.: Guitar tab mining, analysis and ranking. In: ISMIR, pp. 453–458 (2011)

    Google Scholar 

  19. Markou, M., Singh, S.: Novelty detection: a reviewpart 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  20. Panteli, M., Benetos, E., Dixon, S.: Automatic detection of outliers in world music collections. In: Fourth International Conference on Analytical Approaches to World Music (AAWM 2016) (2016)

    Google Scholar 

  21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  23. Zimek, A., Campello, J.G.B., Sander, J.: Ensembles for unsupervised outlier detection: challenges and research questions a position paper. ACM SIGKDD Explor. Newsl. 15(1), 11–22 (2014)

    Article  Google Scholar 

  24. Gómez, E., Klapuri, A., Meudic, B.: Melody description and extraction in the context of music content processing. J. New Music Res. 32(1), 23–40 (2003)

    Article  Google Scholar 

  25. Katoh, K., Misawa, K., Kuma, K.-I., Miyata, T.: MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002)

    Article  Google Scholar 

  26. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334 (1982)

    Article  Google Scholar 

  27. Li, S.Z.: Content-based audio classification and retrieval using the nearest feature line method. Speech Audio Process. 8(5), 619–625 (2000)

    Article  Google Scholar 

  28. Malt, B.C.: An on-line investigation of prototype and exemplar strategies in classification. J. Exp. Psychol. Learn. Mem. Cogn. 15(4), 539 (1989)

    Article  Google Scholar 

  29. Martin, B., Brown, D.G., Hanna, P., Ferraro, P.: Blast for audio sequences alignment: a fast scalable cover identification. In: 13th International Society for Music Information Retrieval Conference, p. 529 (2012)

    Google Scholar 

  30. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  31. Sankoff, D., Kruskal, J.B.: Time warps, string edits, and macromolecules: the theory and practice of sequence comparison. Addison-Wesley Publishing Company, Reading (1983)

    MATH  Google Scholar 

  32. van Kranenburg, P., de Bruin, M., Grijp, L., Wiering, F.: The shs-50 tune collections. In: Shs-50 Online Reports (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bountouridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bountouridis, D., Koops, H.V., Wiering, F., Veltkamp, R.C. (2016). Music Outlier Detection Using Multiple Sequence Alignment and Independent Ensembles. In: Amsaleg, L., Houle, M., Schubert, E. (eds) Similarity Search and Applications. SISAP 2016. Lecture Notes in Computer Science(), vol 9939. Springer, Cham. https://doi.org/10.1007/978-3-319-46759-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46759-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46758-0

  • Online ISBN: 978-3-319-46759-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics