Skip to main content

Bicuspid Aortic Valve

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

An aortic valve typically consists of three valve leaflets, named after their orientation relative to the left and right coronary artery. In 0.5–2 % of the general population, the aortic valve comprises only two leaflets, which is termed a bicuspid aortic valve (BAV). BAV is believed to result from abnormal embryological fusion of two adjacent cusps, due to defective epithelial-to-mesenchymal transition in the outflow tract or abnormal activity of cardiac neural crest cells. Although intrinsically largely asymptomatic, it associates with severe cardiovascular complications such as aortic coarctation and thoracic aortic aneurysms and dissections. In the past, these manifestations accounted for a higher mortality and morbidity than all other congenital heart defects combined. As to significant advances in perioperative management, however, survival rates between BAV and tricuspid aortic valve individuals have now almost equaled. Further improvement of the existing interventions as well as discovery of novel therapeutic targets and accurate predictive biomarkers for BAV-related complications is still warranted though. Therefore, the condition’s pathomechanisms are currently being extensively investigated. Although these investigations have been insightful to some extent, knowledge gaps have increasingly been exposed, highlighting the importance of future experiments digging into the etiology of BAV. In this chapter, a comprehensive overview on the clinical and yet unraveled molecular characteristics of BAV will be provided, as well as a reflection on the factors underlying its current etiological inscrutability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braverman AC, Guven H, Beardslee MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30(9):470–522.

    PubMed  Google Scholar 

  2. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.

    PubMed  Google Scholar 

  3. Fernandez B, Duran AC, Fernandez-Gallego T, Fernandez MC, Such M, Arque JM, et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009;54(24):2312–8.

    PubMed  Google Scholar 

  4. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, et al. Outcomes in adults with bicuspid aortic valves. JAMA. 2008;300(11):1317–25.

    CAS  PubMed  Google Scholar 

  6. Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, Sundt TM, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117(21):2776–84.

    PubMed  PubMed Central  Google Scholar 

  7. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306(10):1104–12.

    CAS  PubMed  Google Scholar 

  8. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.

    PubMed  Google Scholar 

  9. Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging. 2013;6(2):150–61.

    PubMed  Google Scholar 

  10. Kim JS, Ko SM, Chee HK, Shin JK, Song MG, Shin HJ. Relationship between bicuspid aortic valve phenotype, valvular function, and ascending aortic dimensions. J Heart Valve Dis. 2014;23(4):406–13.

    PubMed  Google Scholar 

  11. Braverman AC. Aortic involvement in patients with a bicuspid aortic valve. Heart. 2011;97(6):506–13.

    PubMed  Google Scholar 

  12. Edwards WD, Leaf DS, Edwards JE. Dissecting aortic aneurysm associated with congenital bicuspid aortic valve. Circulation. 1978;57(5):1022–5.

    CAS  PubMed  Google Scholar 

  13. Michelena HI, Prakash SK, Della Corte A, Bissell MM, Anavekar N, Mathieu P, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation. 2014;129(25):2691–704.

    PubMed  PubMed Central  Google Scholar 

  14. Nanda NC, Gramiak R, Manning J, Mahoney EB, Lipchik EO, DeWeese JA. Echocardiographic recognition of the congenital bicuspid aortic valve. Circulation. 1974;49(5):870–5.

    CAS  PubMed  Google Scholar 

  15. Freeman RV, Otto CM. Bicuspid aortic valve and aortopathy: see the first, then look at the second. JACC Cardiovasc Imaging. 2013;6(2):162–4.

    PubMed  Google Scholar 

  16. Yousry M, Rickenlund A, Petrini J, Jenner J, Liska J, Eriksson P, et al. Aortic valve type and calcification as assessed by transthoracic and transoesophageal echocardiography. Clin Physiol Funct Imaging. 2015;35(4):306–13.

    PubMed  Google Scholar 

  17. Takeda H, Muro T, Saito T, Hyodo E, Ehara S, Hanatani A, et al. Diagnostic accuracy of transthoracic and transesophageal echocardiography for the diagnosis of bicuspid aortic valve: comparison with operative findings. Osaka City Med J. 2013;59(2):69–78.

    PubMed  Google Scholar 

  18. Cote G, Denault A. Transesophageal echocardiography-related complications. Can J Anaesth. 2008;55(9):622–47.

    PubMed  Google Scholar 

  19. Joziasse IC, Vink A, Cramer MJ, van Oosterhout MF, van Herwerden LA, Heijmen R, et al. Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography. Neth Heart J. 2011;19(3):119–25.

    PubMed  PubMed Central  Google Scholar 

  20. van der Wall EE. Bicuspid aortic valve; optimal diagnosis and latest interventional treatment. Neth Heart J. 2015;23(3):149–50.

    PubMed  PubMed Central  Google Scholar 

  21. Mordi I, Tzemos N. Bicuspid aortic valve disease: a comprehensive review. Cardiol Res Pract. 2012;2012:196037.

    PubMed  PubMed Central  Google Scholar 

  22. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin 3rd JP, Guyton RA, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.

    PubMed  Google Scholar 

  23. Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.

    Google Scholar 

  24. Ferencik M, Pape LA. Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves. Am J Cardiol. 2003;92(1):43–6.

    PubMed  Google Scholar 

  25. Dore A, Brochu MC, Baril JF, Guertin MC, Mercier LA. Progressive dilation of the diameter of the aortic root in adults with a bicuspid aortic valve. Cardiol Young. 2003;13(6):526–31.

    PubMed  Google Scholar 

  26. Detaint D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME. Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart. 2014;100(2):126–34.

    PubMed  Google Scholar 

  27. Yap SC, Kouwenhoven GC, Takkenberg JJ, Galema TW, Meijboom FJ, van Domburg R, et al. Congenital aortic stenosis in adults: rate of progression and predictors of clinical outcome. Int J Cardiol. 2007;122(3):224–31.

    PubMed  Google Scholar 

  28. Etz CD, Zoli S, Brenner R, Roder F, Bischoff M, Bodian CA, et al. When to operate on the bicuspid valve patient with a modestly dilated ascending aorta. Ann Thorac Surg. 2010;90(6):1884–90; discussion 91–2.

    PubMed  Google Scholar 

  29. Shimada I, Rooney SJ, Pagano D, Farneti PA, Davies P, Guest PJ, et al. Prediction of thoracic aortic aneurysm expansion: validation of formulae describing growth. Ann Thorac Surg. 1999;67(6):1968–70; discussion 79–80.

    CAS  PubMed  Google Scholar 

  30. Niwa K, Perloff JK, Bhuta SM, Laks H, Drinkwater DC, Child JS, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103(3):393–400.

    CAS  PubMed  Google Scholar 

  31. Verstraeten A, Alaerts M, van Laer L, Loeys B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum Mutat. 2016;37(6):524–31.

    CAS  PubMed  Google Scholar 

  32. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey Jr DE, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.

    PubMed  Google Scholar 

  33. Gersony DR, McClaughlin MA, Jin Z, Gersony WM. The effect of beta-blocker therapy on clinical outcome in patients with Marfan’s syndrome: a meta-analysis. Int J Cardiol. 2007;114(3):303–8.

    PubMed  Google Scholar 

  34. Plein A, Calmont A, Fantin A, Denti L, Anderson NA, Scambler PJ, et al. Neural crest-derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. J Clin Invest. 2015;125(7):2661–76.

    PubMed  PubMed Central  Google Scholar 

  35. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, et al. Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.

    CAS  PubMed  Google Scholar 

  36. Allen BD, Markl M, Barker AJ, van Ooij P, Carr JC, Malaisrie SC, et al. Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve. Int J Cardiovasc Imaging. 2016;32(4):621–8.

    PubMed  Google Scholar 

  37. Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science. 2011;332(6027):361–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim DS, Lutucuta S, Bachireddy P, Youker K, Evans A, Entman M, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S. iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer’s mice: understanding the interface between physiology and disease. PLoS One. 2008;3(7):e2750.

    PubMed  PubMed Central  Google Scholar 

  41. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC, 3rd. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    Google Scholar 

  42. Chiu HH, Wu MH, Wang JK, Lu CW, Chiu SN, Chen CA, et al. Losartan added to beta-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clin Proc. 2013;88(3):271–6.

    CAS  PubMed  Google Scholar 

  43. Pees C, Laccone F, Hagl M, Debrauwer V, Moser E, Michel-Behnke I. Usefulness of losartan on the size of the ascending aorta in an unselected cohort of children, adolescents, and young adults with Marfan syndrome. Am J Cardiol. 2013;112(9):1477–83.

    CAS  PubMed  Google Scholar 

  44. Bhatt AB, Buck JS, Zuflacht JP, Milian J, Kadivar S, Gauvreau K, et al. Distinct effects of losartan and atenolol on vascular stiffness in Marfan syndrome. Vasc Med. 2015;20(4):317–25.

    CAS  PubMed  Google Scholar 

  45. Forteza A, Evangelista A, Sanchez V, Teixido-Tura G, Sanz P, Gutierrez L, et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J. 2015;37(12):978–85.

    PubMed  Google Scholar 

  46. Milleron O, Arnoult F, Ropers J, Aegerter P, Detaint D, Delorme G, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2015;36(32):2160–6.

    PubMed  Google Scholar 

  47. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71.

    PubMed  PubMed Central  Google Scholar 

  48. Pitcher A, Emberson J, Lacro RV, Sleeper LA, Stylianou M, Mahony L, et al. Design and rationale of a prospective, collaborative meta-analysis of all randomized controlled trials of angiotensin receptor antagonists in Marfan syndrome, based on individual patient data: A report from the Marfan Treatment Trialists’ Collaboration. Am Heart J. 2015;169(5):605–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development. 2001;128(16):3061–70.

    CAS  PubMed  Google Scholar 

  50. Ohnemus D, Oster ME, Gatlin S, Jokhadar M, Mahle WT. The effect of angiotensin-converting enzyme inhibitors on the rate of ascending aorta dilation in patients with bicuspid aortic valve. Congenit Heart Dis. 2015;10(1):E1–5.

    PubMed  Google Scholar 

  51. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.

    PubMed  Google Scholar 

  52. Della Corte A, Body SC, Booher AM, Schaefers HJ, Milewski RK, Michelena HI, et al. Surgical treatment of bicuspid aortic valve disease: knowledge gaps and research perspectives. J Thorac Cardiovasc Surg. 2014;147(6):1749–57, 57 e1.

    PubMed  Google Scholar 

  53. Accf/Aha/Aats/Acr/Asa/Sca/Scai/Sir/Sts/Svm Guidelines For The D, Management Of Patients With Thoracic Aortic Disease Representative M, Hiratzka LF, Creager MA, Isselbacher EM, Svensson LG, et al. Surgery for Aortic Dilatation in Patients With Bicuspid Aortic Valves: A Statement of Clarification From the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;133(7):680–6.

    Google Scholar 

  54. Bentall H, De Bono A. A technique for complete replacement of the ascending aorta. Thorax. 1968;23(4):338–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gott VL, Greene PS, Alejo DE, Cameron DE, Naftel DC, Miller DC, et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med. 1999;340(17):1307–13.

    CAS  PubMed  Google Scholar 

  56. Benedetto U, Melina G, Takkenberg JJ, Roscitano A, Angeloni E, Sinatra R. Surgical management of aortic root disease in Marfan syndrome: a systematic review and meta-analysis. Heart. 2011;97(12):955–8.

    PubMed  Google Scholar 

  57. David TE. Aortic valve sparing operations: outcomes at 20 years. Ann Cardiothorac Surg. 2013;2(1):24–9.

    PubMed  PubMed Central  Google Scholar 

  58. European Society of G, Association for European Paediatric C, German Society for Gender M, Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.

    Google Scholar 

  59. Lésniak-Sobelga A, Kostklewicz M, Wisniowska-Smialek S, Rubis P, Podolec P. Outcome of pregnancy in patients with bicuspid aortic valve – a study of 89 patients. J Rare Cardiovasc Dis. 2014;2(1):9–14.

    Google Scholar 

  60. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.

    PubMed  Google Scholar 

  61. Maron BJ, Zipes DP, Kovacs RJ, American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC, Stroke Nursing CoFG, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular Aanormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e256–61.

    PubMed  Google Scholar 

  62. Braverman AC, Harris KM, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 7: aortic diseases, including Marfan Syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2398–405.

    PubMed  Google Scholar 

  63. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.

    PubMed  Google Scholar 

  64. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    CAS  PubMed  Google Scholar 

  65. Clementi M, Notari L, Borghi A, Tenconi R. Familial congenital bicuspid aortic valve: a disorder of uncertain inheritance. Am J Med Genet. 1996;62(4):336–8.

    CAS  PubMed  Google Scholar 

  66. Ellison JW, Yagubyan M, Majumdar R, Sarkar G, Bolander ME, Atkinson EJ, et al. Evidence of genetic locus heterogeneity for familial bicuspid aortic valve. J Surg Res. 2007;142(1):28–31.

    CAS  PubMed  Google Scholar 

  67. Hinton RB. Bicuspid aortic valve and thoracic aortic aneurysm: three patient populations, two disease phenotypes, and one shared genotype. Cardiology research and practice. 2012;2012:926975.

    PubMed  PubMed Central  Google Scholar 

  68. Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A. 2007;143A(17):1960–7.

    CAS  PubMed  Google Scholar 

  69. Jain R, Engleka KA, Rentschler SL, Manderfield LJ, Li L, Yuan L, et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest. 2011;121(1):422–30.

    CAS  PubMed  Google Scholar 

  70. Martin LJ, Ramachandran V, Cripe LH, Hinton RB, Andelfinger G, Tabangin M, et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum Genet. 2007;121(2):275–84.

    CAS  PubMed  Google Scholar 

  71. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.

    CAS  PubMed  Google Scholar 

  72. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016. doi:10.1038/gim.2015.193.

    PubMed  Google Scholar 

  73. Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. J Thorac Cardiovasc Surg. 2013;146(1):158–65 e1.

    CAS  PubMed  Google Scholar 

  74. Foffa I, Ait Ali L, Panesi P, Mariani M, Festa P, Botto N, et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet. 2013;14:44.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008;17(18):2886–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138(17):3593–612.

    CAS  PubMed  Google Scholar 

  77. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    CAS  PubMed  Google Scholar 

  78. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49–61.

    CAS  PubMed  Google Scholar 

  79. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kostina AS, Uspensky Vcapital Ie C, Irtyuga OB, Ignatieva EV, Freylikhman O, Gavriliuk ND, et al. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta. 2016;1862(4):733–40.

    CAS  PubMed  Google Scholar 

  81. MacGrogan D, D'Amato G, Travisano S, Martinez-Poveda B, de Luxan G, Del Monte-Nieto G, et al. Sequential ligand-dependent Notch signaling activation regulates valve primordium formation and morphogenesis. Circ Res. 2016;118(10):1480–97.

    CAS  PubMed  Google Scholar 

  82. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    CAS  PubMed  Google Scholar 

  83. Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, et al. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis. 2004;13(4):560–6.

    PubMed  Google Scholar 

  84. Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.

    PubMed  Google Scholar 

  85. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11):e27743.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol. 2009;47(6):828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laforest B, Andelfinger G, Nemer M. Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest. 2011;121(7):2876–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Padang R, Bagnall RD, Richmond DR, Bannon PG, Semsarian C. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol. 2012;53(2):277–81.

    CAS  PubMed  Google Scholar 

  89. Bonachea EM, Chang SW, Zender G, LaHaye S, Fitzgerald-Butt S, McBride KL, et al. Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve. Pediatr Res. 2014;76(2):211–6.

    CAS  PubMed  Google Scholar 

  90. Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, et al. GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med. 2014;33(5):1219–26.

    CAS  PubMed  Google Scholar 

  91. Martin M, Alonso-Montes C, Florez JP, Pichel IA, Rozado J, Andia JB, et al. Bicuspid aortic valve syndrome: a heterogeneous and still unknown condition. Int J Cardiol. 2014;177(3):1105.

    PubMed  Google Scholar 

  92. Wei D, Bao H, Zhou N, Zheng GF, Liu XY, Yang YQ. GATA5 loss-of-function mutation responsible for the congenital ventriculoseptal defect. Pediatr Cardiol. 2013;34(3):504–11.

    PubMed  Google Scholar 

  93. Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, et al. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med. 2015;35(3):763–70.

    PubMed  Google Scholar 

  94. Wang XH, Huang CX, Wang Q, Li RG, Xu YJ, Liu X, et al. A novel GATA5 loss-of-function mutation underlies lone atrial fibrillation. Int J Mol Med. 2013;31(1):43–50.

    PubMed  Google Scholar 

  95. Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li RG, et al. GATA5 loss-of-function mutations underlie tetralogy of fallot. Int J Med Sci. 2013;10(1):34–42.

    CAS  PubMed  Google Scholar 

  96. Nemer G, Nemer M. Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development. 2002;129(17):4045–55.

    CAS  PubMed  Google Scholar 

  97. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81(2):280–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101(20):2345–8.

    CAS  PubMed  Google Scholar 

  99. Chao CS, McKnight KD, Cox KL, Chang AL, Kim SK, Feldman BJ. Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS One. 2015;10(2) e0118449.

    Google Scholar 

  100. Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55(10):662–7.

    CAS  PubMed  Google Scholar 

  101. Laforest B, Nemer M. Genetic insights into bicuspid aortic valve formation. Cardiol Res Pract 2012;2012:180297.

    Google Scholar 

  102. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–7.

    CAS  PubMed  Google Scholar 

  103. Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat. 2012;33(4):720–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol. 2001;155(6):1017–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24(2):171–4.

    CAS  PubMed  Google Scholar 

  106. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott DA, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87(10):888–95.

    CAS  PubMed  Google Scholar 

  108. Chung IM, Rajakumar G. Genetics of congenital heart defects: The NKX2-5 gene, a key player. Genes (Basel). 2016;7(2).

    Google Scholar 

  109. Beffagna G, Cecchetto A, Dal Bianco L, Lorenzon A, Angelini A, Padalino M, et al. R25C mutation in the NKX2.5 gene in Italian patients affected with non-syndromic and syndromic congenital heart disease. J Cardiovasc Med (Hagerstown). 2013;14(8):582–6.

    CAS  Google Scholar 

  110. Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol. 2014;114(12):1891–5.

    CAS  PubMed  Google Scholar 

  111. Quintero-Rivera F, Xi QJ, Keppler-Noreuil KM, Lee JH, Higgins AW, Anchan RM, et al. MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet. 2015;24(8):2375–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Xia F, Bainbridge MN, Tan TY, Wangler MF, Scheuerle AE, Zackai EH, et al. De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am J Hum Genet. 2014;94(5):784–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci. 2014;17(5):664–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M, et al. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008;82(1):214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Basu R, Hazra S, Shanks M, Paterson DI, Oudit GY. Novel mutation in exon 14 of the sarcomere gene MYH7 in familial left ventricular noncompaction with bicuspid aortic valve. Circ Heart Fail. 2014;7(6):1059–62.

    PubMed  Google Scholar 

  116. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Karp N, Grosse-Wortmann L, Bowdin S. Severe aortic stenosis, bicuspid aortic valve and atrial septal defect in a child with Joubert Syndrome and Related Disorders (JSRD) - a case report and review of congenital heart defects reported in the human ciliopathies. Eur J Med Genet. 2012;55(11):605–10.

    PubMed  Google Scholar 

  118. Baasanjav S, Al-Gazali L, Hashiguchi T, Mizumoto S, Fischer B, Horn D, et al. Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet. 2011;89(1):15–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Nistri S, Porciani MC, Attanasio M, Abbate R, Gensini GF, Pepe G. Association of Marfan syndrome and bicuspid aortic valve: frequency and outcome. Int J Cardiol. 2012;155(2):324–5.

    PubMed  Google Scholar 

  120. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    CAS  PubMed  Google Scholar 

  121. Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, Butany J, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.

    PubMed  Google Scholar 

  122. Pepe G, Nistri S, Giusti B, Sticchi E, Attanasio M, Porciani C, et al. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome. BMC Med Genet. 2014;15:23.

    PubMed  PubMed Central  Google Scholar 

  123. Lesauskaite V, Sepetiene R, Jariene G, Patamsyte V, Zukovas G, Grabauskyte I, et al. FBN1 polymorphisms in patients with the dilatative pathology of the ascending thoracic aorta. Eur J Cardiothorac Surg. 2015;47(4):e124–30.

    PubMed  Google Scholar 

  124. Lemaire SA, McDonald ML, Guo DC, Russell L, Miller 3rd CC, Johnson RJ, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43(10):996–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Loeys BL, Dietz HC. Loeys-Dietz Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle (WA)2008.

    Google Scholar 

  126. Arrington CB, Sower CT, Chuckwuk N, Stevens J, Leppert MF, Yetman AT, et al. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am J Cardiol. 2008;102(5):629–31.

    CAS  PubMed  Google Scholar 

  127. Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T. Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg. 2011;91(5):e70–1.

    PubMed  Google Scholar 

  128. Olivieri LJ, Baba RY, Arai AE, Bandettini WP, Rosing DR, Bakalov V, et al. Spectrum of aortic valve abnormalities associated with aortic dilation across age groups in Turner syndrome. Circ Cardiovasc Imaging. 2013;6(6):1018–23.

    PubMed  PubMed Central  Google Scholar 

  129. Mortensen KH, Andersen NH, Gravholt CH. Cardiovascular phenotype in Turner syndrome--integrating cardiology, genetics, and endocrinology. Endocr Rev. 2012;33(5):677–714.

    CAS  PubMed  Google Scholar 

  130. Bondy C, Bakalov VK, Cheng C, Olivieri L, Rosing DR, Arai AE. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome. J Med Genet. 2013;50(10):662–5.

    PubMed  PubMed Central  Google Scholar 

  131. Chang AC, Fu Y, Garside VC, Niessen K, Chang L, Fuller M, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288–300.

    CAS  PubMed  Google Scholar 

  132. Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Koenig SN, Bosse KM, Nadorlik HA, Lilly B, Garg V. Evidence of aortopathy in mice with haploinsufficiency of in -null background. J Cardiovasc Dev Dis. 2015;2(1):17–30.

    PubMed  PubMed Central  Google Scholar 

  134. Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg. 2007;83(4):1290–4.

    PubMed  Google Scholar 

  135. Thomas PS, Sridurongrit S, Ruiz-Lozano P, Kaartinen V. Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PLoS One. 2012;7(4):e35539.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development. 2004;131(14):3481–90.

    CAS  PubMed  Google Scholar 

  137. Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol. 2005;286(1):299–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38(5):525–7.

    CAS  PubMed  Google Scholar 

  139. Makki N, Capecchi MR. Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet. 2012;21(1):26–31.

    PubMed  Google Scholar 

  140. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005;37(10):1035–7.

    CAS  PubMed  Google Scholar 

  141. Akerberg BN, Sarangam ML, Stankunas K. Endocardial Brg1 disruption illustrates the developmental origins of semilunar valve disease. Dev Biol. 2015;407(1):158–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li W, Xiong Y, Shang C, Twu KY, Hang CT, Yang J, et al. Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci U S A. 2013;110(5):1738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Schneppenheim R, Fruhwald MC, Gesk S, Hasselblatt M, Jeibmann A, Kordes U, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet. 2010;86(2):279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet. 2012;44(4):376–8.

    CAS  PubMed  Google Scholar 

  145. Mommersteeg MT, Yeh ML, Parnavelas JG, Andrews WD. Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovasc Res. 2015;106(1):55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17(6):444–51.

    CAS  PubMed  Google Scholar 

  147. McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: Segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Loeys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verstraeten, A., Roos-Hesselink, J., Loeys, B. (2016). Bicuspid Aortic Valve. In: Baars, H., Doevendans, P., Houweling, A., van Tintelen, J. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-44203-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44203-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44202-0

  • Online ISBN: 978-3-319-44203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics