Skip to main content

Genetics of Benign Adrenocortical Tumors

  • Chapter
  • First Online:
Management of Adrenal Masses in Children and Adults

Abstract

Benign adrenocortical tumors (ACT) represent a heterogeneous group of lesions. Cortisol-producing lesions are due mostly to defects of the cyclic AMP (cAMP) signaling pathway, whereas the majority of aldosterone-producing lesions are the result of mutations in KCNJ5. Bilateral adrenal hyperplasias were recently linked to ARMC5 defects; the ARMC5 protein has an unknown function. Finally, benign ACTs are found in the context of a number of other conditions from multiple endocrine neoplasia type 1 (MEN-1) to Carney triad and others. In this chapter, we review all newly identified genetic associations and diseases associated with ACTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenyl cyclase

ACTH:

Adrenocorticotropic hormone

AIMAH:

ACTH-independent macronodular adrenal hyperplasia

Alleles:

Alternative forms of a gene

AMP/ATP:

Adenosine monophosphate/adenosine triphosphate

BAH:

Bilateral adrenocortical hyperplasia

cAMP:

Cyclic adenosine monophosphate

CNC:

Carney complex

CS:

Cushing syndrome

Genes:

Units of inheritance at specific locations (loci) on a chromosome

GMP/GDP/GTP:

Guanosine monophosphate/guanosine diphosphate/guanosine triphosphate

GPCRs:

G protein-coupled receptors

Heterozygous:

A genotype with two different alleles of a gene for a particular trait

Homozygous:

A genotype with the same allele of a gene for a particular trait

MMAD:

Massive macronodular adrenocortical disease

Mutations:

Alteration of genetic material producing a new variation

PBAD:

Primary bimorphic adrenocortical disease

PBMAH:

Primary bilateral macronodular adrenocortical hyperplasia

PDEs:

Phosphodiesterases

Phenotype:

Detectable expression of a genotype

PKA:

Protein kinase A

PPNAD:

Primary pigmented micronodular adrenocortical disease

PRKAR1A:

Protein kinase A regulatory subunit type 1

References

  1. Bimpaki EI, Nesterova M, Stratakis CA. Abnormalities of cAMP signaling are present in adrenocortical lesions associated with ACTH-independent Cushing syndrome despite the absence of mutations in known genes. Eur J Endocrinol. 2009;161(1):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horvath A, Stratakis CA. Unraveling the molecular basis of micronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2008;15(3):227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stratakis CA, Boikos SA. Genetics of adrenal tumors associated with Cushing’s syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab. 2007;3(11):748–57.

    Article  CAS  PubMed  Google Scholar 

  4. Saeger W, Reinhard K, Reinhard C. Hyperplastic and tumorous lesions of the adrenals in an unselected autopsy series. Endocr Pathol. 1998;9(3):235–9.

    Article  PubMed  Google Scholar 

  5. Lodish M, Stratakis CA. A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat Rev Endocrinol. 2016;12(5):255–62.

    Article  CAS  PubMed  Google Scholar 

  6. Kirschner MA, Powell Jr RD, Lipsett MB. Cushing’s syndrome: nodular cortical hyperplasia of adrenal glands with clinical and pathological features suggesting adrenocortical tumor. J Clin Endocrinol Metab. 1964;24:947–55.

    Article  CAS  PubMed  Google Scholar 

  7. Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med. 2013;369(22):2115–25.

    Article  CAS  PubMed  Google Scholar 

  8. Lefebvre H, Duparc C, Chartrel N, Jegou S, Pellerin A, Laquerriere A, et al. Intraadrenal adrenocorticotropin production in a case of bilateral macronodular adrenal hyperplasia causing Cushing's syndrome. J Clin Endocrinol Metab. 2003;88(7):3035–42.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol. 2012;13(10):646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robinson-White A, Meoli E, Stergiopoulos S, Horvath A, Boikos S, Bossis I, et al. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab. 2006;91(6):2380–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lania AG, Mantovani G, Ferrero S, Pellegrini C, Bondioni S, Peverelli E, et al. Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res. 2004;64(24):9193–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bourdeau I, Antonini SR, Lacroix A, Kirschner LS, Matyakhina L, Lorang D, et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene. 2004;23(8):1575–85.

    Article  CAS  PubMed  Google Scholar 

  13. Almeida MQ, Azevedo MF, Xekouki P, Bimpaki EI, Horvath A, Collins MT, et al. Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations. J Clin Endocrinol Metab. 2012;97(4):E687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet. 2000;26(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  16. Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat. 2010;31(4):369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Groussin L, Horvath A, Jullian E, Boikos S, Rene-Corail F, Lefebvre H, et al. A PRKAR1A mutation associated with primary pigmented nodular adrenocortical disease in 12 kindreds. J Clin Endocrinol Metab. 2006;91(5):1943–9.

    Article  CAS  PubMed  Google Scholar 

  18. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–7.

    Article  CAS  PubMed  Google Scholar 

  19. Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990–3011.

    Article  CAS  PubMed  Google Scholar 

  20. Gatta-Cherifi B, Chabre O, Murat A, Niccoli P, Cardot-Bauters C, Rohmer V, et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d’etude des Tumeurs Endocrines database. Eur J Endocrinol. 2012;166(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  21. Simonds WF, Varghese S, Marx SJ, Nieman LK. Cushing’s syndrome in multiple endocrine neoplasia type 1. Clin Endocrinol. 2012;76(3):379–86.

    Article  CAS  Google Scholar 

  22. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baumgartner-Parzer SM, Pauschenwein S, Waldhausl W, Polzler K, Nowotny P, Vierhapper H. Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin Endocrinol. 2002;56(6):811–6.

    Article  CAS  Google Scholar 

  24. Jaresch S, Kornely E, Kley HK, Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1992;74(3):685–9.

    CAS  PubMed  Google Scholar 

  25. Falhammar H, Torpy DJ. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency presenting as adrenal incidentaloma: a systematic review and meta-analysis. Endocr Pract. 2016;22(6):736–52.

    Article  PubMed  Google Scholar 

  26. Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94(8):2930–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaujoux S, Pinson S, Gimenez-Roqueplo AP, Amar L, Ragazzon B, Launay P, et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res. 2010;16(21):5133–41.

    Article  CAS  PubMed  Google Scholar 

  28. Berthon A, Martinez A, Bertherat J, Val P. Wnt/beta-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol. 2012;351(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  29. Matyakhina L, Freedman RJ, Bourdeau I, Wei MH, Stergiopoulos SG, Chidakel A, et al. Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical cushing syndrome: a clinical and molecular genetic investigation. J Clin Endocrinol Metab. 2005;90(6):3773–9.

    Article  CAS  PubMed  Google Scholar 

  30. Carney JA, Stratakis CA. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet. 2002;108(2):132–9.

    Article  PubMed  Google Scholar 

  31. Carney JA, Sheps SG, Go VL, Gordon H. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med. 1977;296(26):1517–8.

    Article  CAS  PubMed  Google Scholar 

  32. Matyakhina L, Bei TA, McWhinney SR, Pasini B, Cameron S, Gunawan B, et al. Genetics of carney triad: recurrent losses at chromosome 1 but lack of germline mutations in genes associated with paragangliomas and gastrointestinal stromal tumors. J Clin Endocrinol Metab. 2007;92(8):2938–43.

    Article  CAS  PubMed  Google Scholar 

  33. Boikos SA, Xekouki P, Fumagalli E, Faucz FR, Raygada M, Szarek E, et al. Carney triad can be (rarely) associated with germline succinate dehydrogenase defects. Eur J Hum Genet. 2016;24(4):569–73.

    Article  CAS  PubMed  Google Scholar 

  34. Haller F, Moskalev EA, Faucz FR, Barthelmess S, Wiemann S, Bieg M, et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer. 2014;21(4):567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.

    Article  CAS  PubMed  Google Scholar 

  36. Jeunemaitre X, Charru A, Pascoe L, Guyene TT, Aupetit-Faisant B, Shackleton CH, et al. Hyperaldosteronism sensitive to dexamethasone with adrenal adenoma. Clinical, biological and genetic study. Presse Med. 1995;24(27):1243–8. Article in French.

    CAS  PubMed  Google Scholar 

  37. Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M, et al. Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocrinol Metab. 1998;83(9):3214–8.

    CAS  PubMed  Google Scholar 

  38. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000;37(11):831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Stergiopoulos S, et al. Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res. 2003;63(17):5308–19.

    CAS  PubMed  Google Scholar 

  41. Reznik Y, Lefebvre H, Rohmer V, Charbonnel B, Tabarin A, Rodien P, et al. Aberrant adrenal sensitivity to multiple ligands in unilateral incidentaloma with subclinical autonomous cortisol hypersecretion: a prospective clinical study. Clin Endocrinol. 2004;61(3):311–9.

    Article  CAS  Google Scholar 

  42. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Correa R, Zilbermint M, Berthon A, Espiard S, Batsis M, Papadakis G, et al. The ARMC5 gene shows extensive genetic variance in primary macronodular adrenocortical hyperplasia. Eur J Endocrinol. 2015;173(4):435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–4. 4e1-2.

    Article  CAS  PubMed  Google Scholar 

  45. Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F, et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension. 2014;63(1):188–95.

    Article  CAS  PubMed  Google Scholar 

  46. Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45(9):1050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife. 2015;4:e06315.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370(11):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao Y, He M, Gao Z, Peng Y, Li Y, Li L, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science. 2014;344(6186):913–7.

    Article  CAS  PubMed  Google Scholar 

  50. Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet. 2014;46(6):613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilmot Roussel H, Vezzosi D, Rizk-Rabin M, Barreau O, Ragazzon B, Rene-Corail F, et al. Identification of gene expression profiles associated with cortisol secretion in adrenocortical adenomas. J Clin Endocrinol Metab. 2013;98(6):E1109–21.

    Article  PubMed  Google Scholar 

  52. Fragoso MC, Domenice S, Latronico AC, Martin RM, Pereira MA, Zerbini MC, et al. Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab. 2003;88(5):2147–51.

    Article  CAS  PubMed  Google Scholar 

  53. Louiset E, Stratakis CA, Perraudin V, Griffin KJ, Libe R, Cabrol S, et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J Clin Endocrinol Metab. 2009;94(7):2406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thiel A, Reis AC, Haase M, Goh G, Schott M, Willenberg HS, et al. PRKACA mutations in cortisol-producing adenomas and adrenal hyperplasia: a single-center study of 60 cases. Eur J Endocrinol. 2015;172(6):677–85.

    Article  CAS  PubMed  Google Scholar 

  55. Sarkar D, Imai T, Kambe F, Shibata A, Ohmori S, Siddiq A, et al. The human homolog of Diminuto/Dwarf1 gene (hDiminuto): a novel ACTH-responsive gene overexpressed in benign cortisol-producing adrenocortical adenomas. J Clin Endocrinol Metab. 2001;86(11):5130–7.

    Article  CAS  PubMed  Google Scholar 

  56. Lacroix A. ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2009;23(2):245–59.

    Article  CAS  PubMed  Google Scholar 

  57. Bourdeau I, Lampron A, Costa MH, Tadjine M, Lacroix A. Adrenocorticotropic hormone-independent Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes. 2007;14(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  58. Bourdeau I, D'Amour P, Hamet P, Boutin JM, Lacroix A. Aberrant membrane hormone receptors in incidentally discovered bilateral macronodular adrenal hyperplasia with subclinical Cushing’s syndrome. J Clin Endocrinol Metab. 2001;86(11):5534–40.

    CAS  PubMed  Google Scholar 

  59. Lacroix A, Bourdeau I, Lampron A, Mazzuco TL, Tremblay J, Hamet P. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol. 2010;73(1):1–15.

    CAS  Google Scholar 

  60. Fragoso MC, Alencar GA, Lerario AM, Bourdeau I, Almeida MQ, Mendonca BB, et al. Genetics of primary macronodular adrenal hyperplasia. J Endocrinol. 2015;224(1):R31–43.

    Article  CAS  PubMed  Google Scholar 

  61. Swords FM, Baig A, Malchoff DM, Malchoff CD, Thorner MO, King PJ, et al. Impaired desensitization of a mutant adrenocorticotropin receptor associated with apparent constitutive activity. Mol Endocrinol. 2002;16(12):2746–53.

    Article  CAS  PubMed  Google Scholar 

  62. Assie G, Libe R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med. 2013;369(22):2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N, et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab. 2014;99(6):E1113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alencar GA, Lerario AM, Nishi MY, Mariani BM, Almeida MQ, Tremblay J, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal Hyperplasia. J Clin Endocrinol Metab. 2014;99(8):E1501–9.

    Article  CAS  PubMed  Google Scholar 

  65. Espiard S, Drougat L, Libe R, Assie G, Perlemoine K, Guignat L, et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab. 2015;100(6):E926–35.

    Article  CAS  PubMed  Google Scholar 

  66. Bourdeau I, Matyakhina L, Stergiopoulos SG, Sandrini F, Boikos S, Stratakis CA. 17q22-24 chromosomal losses and alterations of protein kinase a subunit expression and activity in adrenocorticotropin-independent macronodular adrenal hyperplasia. J Clin Endocrinol Metab. 2006;91(9):3626–32.

    Article  CAS  PubMed  Google Scholar 

  67. Almeida MQ, Harran M, Bimpaki EI, Hsiao HP, Horvath A, Cheadle C, et al. Integrated genomic analysis of nodular tissue in macronodular adrenocortical hyperplasia: progression of tumorigenesis in a disorder associated with multiple benign lesions. J Clin Endocrinol Metab. 2011;96(4):E728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91(2):651–90.

    Article  CAS  PubMed  Google Scholar 

  69. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014;35(2):195–233.

    Article  CAS  PubMed  Google Scholar 

  70. Spiessberger B, Bernhard D, Herrmann S, Feil S, Werner C, Luppa PB, et al. cGMP-dependent protein kinase II and aldosterone secretion. FEBS J. 2009;276(4):1007–13.

    Article  CAS  PubMed  Google Scholar 

  71. Durand J, Lampron A, Mazzuco TL, Chapman A, Bourdeau I. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations. J Clin Endocrinol Metab. 2011;96(7):E1206–11.

    Article  PubMed  Google Scholar 

  72. Tadjine M, Lampron A, Ouadi L, Horvath A, Stratakis CA, Bourdeau I. Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clin Endocrinol. 2008;69(3):367–73.

    Article  CAS  Google Scholar 

  73. Gaujoux S, Tissier F, Groussin L, Libe R, Ragazzon B, Launay P, et al. Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab. 2008;93(10):4135–40.

    Article  CAS  PubMed  Google Scholar 

  74. Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74.

    Article  CAS  PubMed  Google Scholar 

  75. Tsai LC, Shimizu-Albergine M, Beavo JA. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Mol Pharmacol. 2011;79(4):639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horvath A, Mericq V, Stratakis CA. Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia. N Engl J Med. 2008;358(7):750–2.

    Article  CAS  PubMed  Google Scholar 

  77. Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 2006;38(7):794–800.

    Article  CAS  PubMed  Google Scholar 

  78. Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, et al. Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res. 2006;66(24):11571–5.

    Article  CAS  PubMed  Google Scholar 

  79. Rothenbuhler A, Horvath A, Libe R, Faucz FR, Fratticci A, Raffin Sanson ML, et al. Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clin Endocrinol (Oxf). 2012;77(2):195–9.

    Article  CAS  Google Scholar 

  80. Libe R, Horvath A, Vezzosi D, Fratticci A, Coste J, Perlemoine K, et al. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 2011;96(1):E208–14.

    Article  CAS  PubMed  Google Scholar 

  81. Kirk JM, Brain CE, Carson DJ, Hyde JC, Grant DB. Cushing’s syndrome caused by nodular adrenal hyperplasia in children with McCune-Albright syndrome. J Pediatr. 1999;134(6):789–92.

    Article  CAS  PubMed  Google Scholar 

  82. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325(24):1688–95.

    Article  CAS  PubMed  Google Scholar 

  83. Carney JA, Young WF, Stratakis CA. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome. Am J Surg Pathol. 2011;35(9):1311–26.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Husebye ES, Allolio B, Arlt W, Badenhoop K, Bensing S, Betterle C, et al. Consensus statement on the diagnosis, treatment and follow-up of patients with primary adrenal insufficiency. J Intern Med. 2014;275(2):104–15.

    Article  CAS  PubMed  Google Scholar 

  85. Raygada M, King KS, Adams KT, Stratakis CA, Pacak K. Counseling patients with succinate dehydrogenase subunit defects: genetics, preventive guidelines, and dealing with uncertainty. J Pediatr Endocrinol Metab. 2014;27(9-10):837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salpea P, Horvath A, London E, Faucz FR, Vetro A, Levy I, et al. Deletions of the PRKAR1A locus at 17q24.2-q24.3 in Carney complex: genotype-phenotype correlations and implications for genetic testing. J Clin Endocrinol Metab. 2014;99(1):E183–8.

    Article  PubMed  Google Scholar 

  87. Calebiro D, Hannawacker A, Lyga S, Bathon K, Zabel U, Ronchi C, et al. PKA catalytic subunit mutations in adrenocortical Cushing’s adenoma impair association with the regulatory subunit. Nat Commun. 2014;5:5680.

    Article  CAS  PubMed  Google Scholar 

  88. Lacroix A. Heredity and cortisol regulation in bilateral macronodular adrenal hyperplasia. N Engl J Med. 2013;369(22):2147–9.

    Article  CAS  PubMed  Google Scholar 

  89. Debillon E, Velayoudom-Cephise FL, Salenave S, Caron P, Chaffanjon P, Wagner T, et al. Unilateral adrenalectomy as a first-line treatment of Cushing’s syndrome in patients with primary bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab. 2015;100(12):4417–24.

    Article  CAS  PubMed  Google Scholar 

  90. Vezzosi D, Tenenbaum F, Cazabat L, Tissier F, Bienvenu M, Carrasco CA, et al. Hormonal, radiological, NP-59 scintigraphy, and pathological correlations in patients with Cushing’s syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). J Clin Endocrinol Metab. 2015;100(11):4332–8.

    Article  CAS  PubMed  Google Scholar 

  91. Goupil R, Wolley M, Ahmed AH, Gordon RD, Stowasser M. Does concomitant autonomous adrenal cortisol overproduction have the potential to confound the interpretation of adrenal venous sampling in primary aldosteronism? Clin Endocrinol. 2015;83(4):456–61.

    Article  CAS  Google Scholar 

  92. Patel D, Gara SK, Ellis RJ, Boufraqech M, Nilubol N, Millo C, et al. FDG PET/CT Scan and functional adrenal tumors: a pilot study for lateralization. World J Surg. 2016;40(3):683–9.

    Article  PubMed  Google Scholar 

  93. Eisenhofer G, Dekkers T, Peitzsch M, Dietz AS, Bidlingmaier M, Treitl M, et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin Chem. 2016;62(3):514–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the intramural program of the Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health (NIH), protocol HD008920.

Author and Contributors

All authors contributed equally to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND drafting the work or revising it critically for important intellectual content; AND final approval of the version to be published; AND agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conflict of Interest Statement

The authors declare that the research was conducted in absence of any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine A. Stratakis M.D., D(Med)Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hannah-Shmouni, F., Stratakis, C.A. (2017). Genetics of Benign Adrenocortical Tumors. In: Kebebew, E. (eds) Management of Adrenal Masses in Children and Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-44136-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44136-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44134-4

  • Online ISBN: 978-3-319-44136-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics