Skip to main content

Truncus Arteriosus

  • Chapter
  • First Online:
Doppler Echocardiography in Infancy and Childhood

Abstract

The precordial views in children with truncus arteriosus show a biventricular heart, usually associated with a large perimembranous VSD. The truncus arteriosus, representing the single arterial outlet, originates from both ventricles, overriding the VSD. Colour Doppler in the parasternal long axis and in the apical five-chamber view is essential to assess the function of the truncal valve, which is frequently both regurgitant and stenotic. Colour Doppler helps to identify the origin and course of the pulmonary arteries. PW Doppler interrogation of diastolic flow in the descending aorta and in systemic arteries provides the possibility to assess diastolic run-off from the systemic circulation. CW Doppler interrogation helps to quantify obstruction of the truncal valve and of the central pulmonary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Calder L, Van Praagh R et al (1976) Truncus arteriosus communis. Clinical, angiocardiographic, and pathologic findings in 100 patients. Am Heart J 92(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Collett RW, Edwards JE (1949) Persistent truncus arteriosus; a classification according to anatomic types. Surg Clin North Am 29(4):1245–1270

    Article  CAS  PubMed  Google Scholar 

  • Colon M, Anderson RH et al (2008) Anatomy, morphogenesis, diagnosis, management, and outcomes for neonates with common arterial trunk. Cardiol Young 18(Suppl 3):52–62

    Article  PubMed  Google Scholar 

  • Fuglestad SJ, Puga FJ et al (1988) Surgical pathology of the truncal valve: a study of 12 cases. Am J Cardiovasc Pathol 2(1):39–47

    CAS  PubMed  Google Scholar 

  • Hosseinpour AR, Shinebourne EA (2005) Assessment of operability for common arterial trunk without cardiac catheterisation. Cardiol Young 15(3):241–244

    Article  PubMed  Google Scholar 

  • Jacobs ML (2000) Congenital heart surgery nomenclature and database project: truncus arteriosus. Ann Thorac Surg 69(4 Suppl):​S50–S55

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov IE, Karamlou T et al (2006) Truncus arteriosus associated with interrupted aortic arch in 50 neonates: a congenital heart surgeons society study. Ann Thorac Surg 81(1):214–223

    Article  PubMed  Google Scholar 

  • Lindinger A, Schwedler G et al (2010) Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the PAN Study (July 2006 to June 2007). Klin Padiatr 222(5):321–326

    Article  CAS  PubMed  Google Scholar 

  • Mair DD, Ritter DG et al (1977) Truncus arteriosus with unilateral absence of a pulmonary-artery – criteria for operability and surgical results. Circulation 55(4):641–647

    Article  CAS  PubMed  Google Scholar 

  • McElhinney DB, Driscoll DA et al (2003) Chromosome 22q11 deletion in patients with truncus arteriosus. Pediatr Cardiol 24(6):569–573

    Article  CAS  PubMed  Google Scholar 

  • Mello DM, McElhinney DB et al (1997) Truncus arteriosus with patent ductus arteriosus and normal aortic arch. Ann Thorac Surg 64(6):1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Moes CA, Freedom RM (1980) Aortic arch interruption with truncus arteriosus or aorticopulmonary septal defect. AJR Am J Roentgenol 135(5):1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Moes CAF, Freedom RM (1992) Rings, slings, and other things: vascular structures contributing to a neonatal noose. In: Freedom RM, Benson LN, Smallhorn JF (eds) Neonatal heart disease. Springer, London/ Berlin/ Heidelberg

    Google Scholar 

  • Momma K (2007) Cardiovascular anomalies associated with chromosome 22q11.2 deletion. Int J Cardiol 114(2):147–149

    Article  PubMed  Google Scholar 

  • Rauch R, Rauch A et al (2004) Laterality of the aortic arch and anomalies of the subclavian artery-reliable indicators for 22q11.2 deletion syndromes? Eur J Pediatr 163(11):642–645

    PubMed  Google Scholar 

  • Russell HM, Jacobs ML et al (2011) A simplified categorization for common arterial trunk. J Thorac Cardiovasc Surg 141(3):645–653

    Article  PubMed  Google Scholar 

  • Schwedler G, Lindinger A et al (2011) Frequency and spectrum of congenital heart defects among live births in Germany : a study of the competence network for congenital heart defects. Clin Res Cardiol : Off J Ger Card Soc 100(12):1111–1117

    Article  Google Scholar 

  • Smallhorn JF, Anderson RH et al (1982) Two dimensional echocardiographic assessment of communications between ascending aorta and pulmonary trunk or individual pulmonary arteries. Br Heart J 47(6):563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LD, McElhinney DB et al (2001) Neonatal repair of truncus arteriosus: continuing improvement in outcomes. Ann Thorac Surg 72(2):391–395

    Article  CAS  PubMed  Google Scholar 

  • Tworetzky W, McElhinney DB et al (1999) Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol 33(1):228–233

    Article  CAS  PubMed  Google Scholar 

  • Van Mierop LH, Kutsche LM (1986) Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 58(1):133–137

    Article  PubMed  Google Scholar 

  • Van Praagh R (1987) Truncus arteriosus: what is it really and how should it be classified? Eur J Cardiothorac Surg 1(2):65–70

    Article  PubMed  Google Scholar 

  • Van Praagh R, Van Praagh S (1965) The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol 16(3):406–425

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

13.1 Electronic Supplementary Material

Video 13.1

Parasternal long-axis view in a newborn shows the large perimembranous malalignment VSD and overriding of the truncus arteriosus. The truncal valve is slightly dysplastic. Cranial to the truncal valve, the pulmonary artery originates from the posterior truncal wall (AVI 21441 kb)

Video 13.2

(AVI 4049 kb)

Video 13.3

The large perimembranous VSD and overriding of the truncal valve are displayed in the apical five-chamber view of a newborn with truncus arteriosus (AVI 9127 kb)

Video 13.4

The apical four-chamber view in the plane of the atrioventricular valves shows a seemingly intact ventricular septum in a young infant with truncus arteriosus. Note the enlarged left atrium and left ventricle which is due to increased pulmonary blood flow (AVI 14007 kb)

Video 13.5

In a newborn with truncus arteriosus, the parasternal short-axis sweep starting at the level of the papillary muscles reveals the large perimembranous malalignment VSD, which is located underneath the truncal valve(AVI 68502 kb)

Video 13.6

The parasternal short-axis sweep starting at the level of the truncal valve (same patient as in Video 13.5) displays a tricuspid truncal valve. Both pulmonary arteries originate very close from the posterior wall of the truncus arteriosus (truncus arteriosus type A2)(AVI 46969 kb)

Video 13.7

Colour Doppler in the parasternal short-axis view (same patient as in Video 13.7) confirms unobstructed origin of the pulmonary arteries from the truncus arteriosus (AVI 2635 kb)

Video 13.8

Colour Doppler in the parasternal short-axis view of a newborn with truncus arteriosus type A3 reveals origin of the right pulmonary artery from the posterior truncal wall. The left pulmonary artery is displayed by colour Doppler but does not connect to the main pulmonary artery (see also Videos 13.9 and 13.10) (AVI 952 kb)

Video 13.9

Colour Doppler in the high left parasternal short-axis view reveals a left innominate artery dividing into left common carotid and left subclavian artery suggesting a right aortic arch (same patient as in Videos 13.8 and 13.10). From the base of the innominate artery originates a left ductus arteriosus, which supplies the left pulmonary artery (see Video 13.8) (AVI 19904 kb)

Video 13.10

Colour Doppler in the suprasternal long-axis view (same patient as in Videos 13.8 and 13.9) confirms a right aortic arch (AVI 1024 kb)

Video 13.11

The high right parasternal long-axis view of the aortic arch in a patient with truncus arteriosus type A2 displays posterior origin of the right pulmonary artery from the arterial trunk(WMV 1892 kb)

Video 13.12

The colour Doppler sweep in a patient with truncus arteriosus type A4 starts in a high parasternal sagittal plane. Leftward orientation of the transducer displays origin of both pulmonary arteries from the posterior wall of the truncus arteriosus; the large cranial structure is a huge patent ductus arteriosus. Rightward orientation of the transducer displays the ascending aorta originating from the truncus arteriosus. At the end of the sweep, the transducer is tilted again towards the left, displaying the ductus and the origin of the pulmonary arteries (AVI 16882 kb)

Video 13.13

The high parasternal short-axis view in a patient with truncus arteriosus type A4 shows separation of the common trunk into a small ascending aorta, which is located slightly anterior, and a large pulmonary artery. The innominate vein is visualized anterior the truncus arteriosus (AVI 24263 kb)

Video 13.14

Colour Doppler in a slightly more cranial view (same patient as in Video 13.13) displays origin of the right and left pulmonary artery from the posterior aspect of the truncus arteriosus (AVI 20827 kb)

Video 13.15

Colour Doppler in the oblique high parasternal short-axis view in a patient with TAC type A4 and interrupted aortic arch shows continuation of the large ductus arteriosus into the descending aorta (AVI 1352 kb)

Video 13.16

The subcostal coronal view in this neonate with TAC type A1 shows the truncus arteriosus overriding both ventricles and the large VSD (AVI 8477 kb)

Video 13.17

Colour Doppler in the subcostal coronal view (same patient as in Video 13.16) reveals systolic acceleration of flow across the truncal valve, while there is only minor regurgitation displayed in diastole (AVI 3196 kb)

Video 13.18

The sweep in the subcostal coronal view of a newborn with TAC type A2 displays origin of the right pulmonary artery from the posterior aspect of the truncus arteriosus, while the left pulmonary artery takes its origin from the more leftward aspect of the truncus arteriosus (AVI 6101 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hofbeck, M., Deeg, KH., Rupprecht, T. (2017). Truncus Arteriosus. In: Doppler Echocardiography in Infancy and Childhood. Springer, Cham. https://doi.org/10.1007/978-3-319-42919-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42919-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42917-5

  • Online ISBN: 978-3-319-42919-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics