Skip to main content

Marine Sediment

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Definition

Marine sediment is a mixture of material deposited on the seafloor that originated from the erosion of continents, volcanism, biological productivity, hydrothermal vents, and/or cosmic debris. The contributions of these sediment sources to the seafloor are controlled by wind, ocean circulation, and water depth that collectively determine the transport, deposition, and preservation of each sediment type. The alteration of these sediment types (“authigenesis”) is also an important process affecting the final composition of marine sediment.

Introduction

The geochemical composition of marine sediment is diverse. Marine sediment is most commonly classified according to the origin of the material(s) composing the bulk sediment, with end-members being referred to as, for example, aluminosilicate, biogenic, or metalliferous (Table 1). Here, we summarize the broad-scale processes and trends in these compositionally defined end-members and further discuss some of the subtleties in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer D, Lyle M, Rodgers K, Froelich P (1993) What controls opal preservation in tropical deep-sea sediments? Paleoceanography 8:7–21

    Article  Google Scholar 

  • Arvidson RS, Morse JW (2014) Formation and diagenesis of carbonate sediments. In: Holland HD, Turekian K (eds) Treatise on geochemistry. Elsevier Ltd., Amsterdam, pp 61–101

    Chapter  Google Scholar 

  • Bender M, Broecker W, Gornity V, Middel U, Key R, Sun SS, Biscaye P (1971) Geochemistry of three cores from the East Pacific Rise. Earth Planet Sci Lett 12:425–433

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, p 256

    Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modem oceans: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Bohrmann G, Abelmann A, Gersonde R, Hubberten H, Kuhn G (1994) Pure siliceous ooze, a diagenetic environment for early chert formation. Geology 22:207–210

    Article  Google Scholar 

  • Boström K (1973) The origin and fate of ferromanganese active ridge sediments. Stockh Contrib Geol 27:149–243

    Google Scholar 

  • Boström K, Fisher DE (1969) Distribution of mercury in East Pacific sediments. Geochim Cosmochim Acta 33:743–745

    Article  Google Scholar 

  • Boström K, Peterson M (1969) The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific rise. Mar Geol 7:427–447

    Article  Google Scholar 

  • Brueckner HK, Snyder WS (1985) Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Monterey formation, California. J Sediment Petrol 55:553–568

    Google Scholar 

  • Cambray H, Cadet JP, Pouclet A (1993) Ash layers in deep-sea sediments as tracers of arc volcanic activity: Japan and central America as case studies. Island Arc 2:72–86

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1980) The Roseau ash: deep-sea tephra deposits from a major eruption on Dominica, lesser antilles arc. J Volcanol Geotherm Res 7:67–86

    Article  Google Scholar 

  • Cole TG (1985) Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer deep, Southeast Pacific. Geochim Cosmochim Acta 49:221–235

    Article  Google Scholar 

  • Cole TG, Shaw HF (1983) The nature and origin of authigenic smectites in some recent marine sediments. Clay Miner 18:239–252

    Article  Google Scholar 

  • Crocket JH, MacDougall JD, Harriss RC (1973) Gold, palladium and iridium in marine sediments. Geochim Cosmochim Acta 37:2547–2556

    Article  Google Scholar 

  • Cronan DS (1976) Basalt metalliferous sediments from the eastern Pacific. Geol Soc Am Bull 87:928–934

    Article  Google Scholar 

  • Cuadros J, Dekov VM, Arroyo X, Nieto F (2011) Smectite formation in submarine hydrothermal sediments: samples from the HMS challenger expedition (1872–1876). Clay Clay Miner 59:147–164

    Article  Google Scholar 

  • DeMaster DJ (2014) The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust. In: Holland HD, Turekian K (eds) Treatise on geochemistry. Elsevier Ltd., Amsterdam, pp 103–111

    Chapter  Google Scholar 

  • Desprairies A, Riviere M, Pubellier M (1991) Diagenetic evolution of Neogene volcanic ashes (Celebes and Sulu seas). Proc Integr Ocean Drill Program Sci Results 124:489–503

    Google Scholar 

  • D’Hondt S, Inagaki F, Alvarez Zarikian CA, Expedition 329 Scientists (2011) Expedition 329 reports. In: Proceedings of the integrated ocean drilling program, 329. Tokyo, Integrated Ocean Drilling Program Management International, Inc. https://doi.org/10.2204/iodp.proc.329.2011

  • Divins DL (2003) Total sediment thickness of the world’s oceans & marginal seas. Boulder, NOAA National Geophysical Data Center

    Google Scholar 

  • Dong L, Shen B, Lee C-TA, Shu X-J, Peng Y, Sun Y, Tang Z, Rong H, Lang X, Ma H, Yang F, Guo W (2015) Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: implications for the bedded chert formation and paleoenvironment interpretations. Geochem Geophys Geosyst 16:751–763

    Article  Google Scholar 

  • Dunlea AG, Murray RW, Sauvage J, Pockalny RA, Spivack AJ, Harris RN, D’Hondt S (2015a) Cobalt-based age models of pelagic clay in the South Pacific gyre. Geochem Geophys Geosyst 16:2694–2710

    Article  Google Scholar 

  • Dunlea AG, Murray RW, Sauvage J, Spivack AJ, Harris RN, D’Hondt S (2015b) Dust, volcanic ash, and the evolution of the South Pacific gyre through the Cenozoic. Paleoceanography 30:1078–1099

    Article  Google Scholar 

  • Dutkiewicz A, Müller RD, O’Callaghan S, Jónasson H (2015) Census of seafloor sediments in the world’s ocean. Geology 43:795–798

    Article  Google Scholar 

  • Dymond J, Corliss JB, Heath GR, Field CW, Dasch EJ, Veeh HH (1973) Origin of metalliferous sediments from the Pacific Ocean. Geol Soc Am Bull 84:3355–3372

    Article  Google Scholar 

  • Dymond J (1981) Geochemistry of Nazca plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources. Geol Soc Am Mem 154:133–173

    Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  Google Scholar 

  • Emerson S (1985) Organic carbon preservation in marine sediments. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM032p0078

    Chapter  Google Scholar 

  • Emerson S, Bender ML (1981) Carbon fluxes at the sediment-water interface of the deep sea: calcium carbonate preservation. J Mar Res 39:139–162

    Google Scholar 

  • Filippelli GM (2011) Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84:759–766

    Article  Google Scholar 

  • Fisher DE, Bostrom K (1969) Uranium rich sediments on the East Pacific Rise. Nature 22:64

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin/Heidelberg, p 472

    Book  Google Scholar 

  • Fitzsimmons JN, Boyle EA, Jenkins WJ (2014) Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc Natl Acad Sci 111:16654–16661

    Article  Google Scholar 

  • Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T (1982) The marine phosphorus cycle. Am J Sci 282:474–511

    Article  Google Scholar 

  • Gardner JV, Nelson CS, Baker PA (1986) Distribution and character of pale green laminae in sediment from Lord Howe rise: a probable late Neogene and quaternary tephrostratigraphic record. Deep Sea Drill Proj Initial Rep 90:1145–1159

    Google Scholar 

  • Garrison RE, Douglas RG, Pisciotto KE, Isaacs CM, Ingle JC (1981) The Monterey formation and related siliceous rocks of California. Pac Section SEPM 15:327

    Google Scholar 

  • German CR, Seyfield WE Jr (2014) Hydrothermal processes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier Ltd, Amsterdam, pp 191–233

    Chapter  Google Scholar 

  • Glaccum R, Prospero J (1980) Saharan aerosols over the tropical North Atlantic–mineralogy. Mar Geol 37:295–321

    Article  Google Scholar 

  • Goldberg ED, Arrhenius G (1958) Chemistry of Pacific pelagic sediments. Geochim Cosmochim Acta 13:153–212

    Article  Google Scholar 

  • Gurvich EG (2006) Metalliferous sediments of the world ocean: fundamental theory of deep-sea hydrothermal sedimentation. Springer, Berlin/Heidelberg, p 416

    Google Scholar 

  • Haymon RM, Kastner M (1986) The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific rise axis at 21 N. Geochim Cosmochim Acta 50:1933–1939

    Article  Google Scholar 

  • Heath GR, Dymond J (1977) Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate. Geol Soc Am Bull 88:723–733

    Article  Google Scholar 

  • Hein JR (ed) (1987) Siliceous sedimentary rock-hosted ores and petroleum. Van Nostrand Reinhold, New York, p 304

    Google Scholar 

  • Hinman N (1990) Chemical factors influencing the rates and sequences of silica phase transitions: effects of organic constituents. Geochim Cosmochim Acta 54:1563–1574

    Article  Google Scholar 

  • Horowitz A (1970) The distribution of Pb, Ag, Sn, Tl, and Zn in sediments on active oceanic ridge. Mar Geol 9:241–259

    Article  Google Scholar 

  • Hurd DC (1973) Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific. Geochim Cosmochim Acta 37:2257–2282

    Article  Google Scholar 

  • Isaacs CM (1982) Influence of rock composition on kinetics of silica phase changes in the Monterey formation, Santa Barbara area, California. Geology 10:304–308

    Article  Google Scholar 

  • Jarvis I (1985) Geochemistry and origin of Eocene-Oligocene metalliferous sediments from the central equatorial Pacific: Deep Sea Drilling Project Sites 573 and 574. Initial Rep Deep Sea Drill Proj 85:781–804

    Google Scholar 

  • Jenkyns HC, Winterer EL (1982) Palaeoceanography of Mesozoic ribbon radiolarites. Earth Planet Sci Lett 60:351–375

    Article  Google Scholar 

  • Kastner M (1999) Oceanic minerals: their origin, nature of their environment and significance. Proc Natl Acad Sci 96:3380–3387

    Article  Google Scholar 

  • Kastner M, Keene JB, Gieskes JM (1977) Diagenesis of siliceous oozes—I. Chemical controls on the rate of opal-a to opal-CT transformation—an experimental study. Geochim Cosmochim Acta 41:1041–1059

    Article  Google Scholar 

  • Kutterolf S, Schindlbeck JC, Scudder RP, Murray RW, Pickering KT, Freundt A, Labanieh S, Heydolph K, Saito S, Naruse H, Underwood MB, Wu H (2014) Large volume submarine ignimbrites in the Shikoku Basin: an example for explosive volcanism in the western Pacific during the late Miocene. Geochem Geophys Geosyst 15:1837–1851

    Article  Google Scholar 

  • Lear C, Elderfield H, Wilson P (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272

    Article  Google Scholar 

  • Leinen M, Pisias N (1984) An objective technique for determining end-member compositions and for partitioning sediments according to their sources. Geochim Cosmochim Acta 48:47–62

    Article  Google Scholar 

  • Li YH (2000) A compendium of geochemistry: from solar Nebula to the human brain. Princeton University Press, Princeton

    Google Scholar 

  • Li Y-H, Schoonmaker JE (2014) Chemical composition and mineralogy of marine sediments. In: Holland HD, Turekian K (eds) Treatise on geochemistry. Elsevier Ltd., Amsterdam, pp 1–32

    Google Scholar 

  • Lyle MW (1986) Major element composition of leg 92 sediments. Deep Sea Drill Proj Initial Rep 92:355–370

    Google Scholar 

  • Mackenzie FT, Garrels RM (1966) Chemical mass balance between rivers and oceans. Am J Sci 264:507–525

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19. https://doi.org/10.1029/2004GB002402

    Google Scholar 

  • Marchig V, Erzinger J (1986) Chemical composition of Pacific sediments near 20 S: changes with increasing distance from the East Pacific rise. Deep Sea Drill Proj Initial Rep 92:371–381

    Google Scholar 

  • McManus J, Hammond DE, Berelson WM et al (1995) Early diagenesis of biogenic opal: dissolution rates, kinetics, and paleoceanographic implications. Deep-Sea Res 42:871–903

    Google Scholar 

  • Meister P, Chapligin B, Picard A, Meyer H, Fischer C, Rettenwander D, Amthauer G, Vogt C, Aiello IW (2014) Early diagenetic quartz formation at a deep iron oxidation front in the eastern equatorial Pacific – a modern analogue for banded iron/chert formations? Geochim Cosmochim Acta 137:188–207

    Article  Google Scholar 

  • Merino E, Canals A (2011) Self-accelerating dolomite-for-calcite replacement: self-organized dynamics of burial dolomitization and associated mineralization. Am J Sci 311:573–607

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68:1061–1085

    Article  Google Scholar 

  • Millard HT, Finkelman RB (1970) Chemical and mineralogical compositions of cosmic and terrestrial spherules from a marine sediment. J Geophys Res 75:2125–2134

    Article  Google Scholar 

  • Millero FJ (2013) Chemical oceanography, 4th edn. CRC Press/LLC Taylor & Francis Group, Boca Raton, p 469

    Google Scholar 

  • Murray RW (1994) Chemical-criteria to identify the depositional environment of chert – general-principles and applications. Sediment Geol 90:213–232

    Article  Google Scholar 

  • Murray J, Renard AF (1883) On the microscopic characters of volcanic ashes and cosmic dust, and their distribution in deep-sea deposits. Proc Roy Soc Edinb 12:474–495

    Article  Google Scholar 

  • Murray RW, Buchholtz ten Brink MR, Jones DL, Gerlach DC, Russ GP III (1990) Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18:268–271

    Article  Google Scholar 

  • Murray RW, Brink ten M, Gerlach DC (1991) Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, California: assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta 55:1875–1895

    Article  Google Scholar 

  • Murray RW, Jones DL, Buchholtz ten Brink MR (1992) Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet. Geology 20:271–274

    Article  Google Scholar 

  • Murrell MT, Davis PA, Nishiizumi K, Millard HT (1980) Deep-sea spherules from Pacific clay: mass distribution and influx rate. Geochim Cosmochim Acta 44:2067–2074

    Article  Google Scholar 

  • Ninkovich D, Sparks R, Ledbetter M (1978) The exceptional magnitude and intensity of the Toba eruption, Sumatra: an example of the use of deep-sea tephra layers as a geological tool. Bull Volcanol 41:286

    Article  Google Scholar 

  • Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, Óskarsson N, Siebe C, Auer A, Garbe-Schönberg D (2011) Surface Ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob Biogeochem Cycles 25:GB4001. https://doi.org/10.1029/2009GB003761

    Article  Google Scholar 

  • Peters JL, Murray RW, Sparks JW, Coleman DS (2000) Terrigenous matter and dispersed ash in sediment from the Caribbean Sea: results from leg 165. Proc Ocean Drill Program Sci Results 165:115–124

    Google Scholar 

  • Pickering KT, Underwood MB, Saito S, Naruse H, Kutterolf S, Scudder RP, Park J-O, Moore GF, Slagle A (2013) Depositional architecture, provenance, and tectonic/eustatic modulation of Miocene submarine fans in the Shikoku Basin: results from Nankai trough Seismogenic zone experiment. Geochem Geophys Geosyst 14:1722–1739. https://doi.org/10.1002/ggge.20107

    Article  Google Scholar 

  • Piper DZ, Heath GR (1989) Hydrogenous sediment. Geol North Am N:337–345

    Google Scholar 

  • Pisias NG, Murray RW, Scudder RP (2013) Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: general principles and specific MATLAB scripts. Geochem Geophys Geosyst 5:4015–4020

    Article  Google Scholar 

  • Plane JMC (2012) Cosmic dust in the earth's atmosphere. Chem Soc Rev 41:6507–6518

    Article  Google Scholar 

  • Plank T, Ludden JN, Escutia C, Shipboard SP (2000) Leg 185 summary: inputs to the Izu–Mariana subduction system. Proc Integr Ocean Drill Program Initial Rep 185:1–63. https://doi.org/10.2973/odp.proc.ir.185.101.2000

  • Rose WI, Gu Y, Watson IM, Yu T (2003) The February–March 2000 eruption of Hekla, Iceland from a satellite perspective. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s atmosphere. American Geophysical Union, Washington, DC

    Google Scholar 

  • Rosenthal Y et al (2004) Laboratory inter-comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geophys Geochem Geosyst 5. https://doi.org/10.1029/2003GC000650

  • Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, Tagliabue A (2015) Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–203

    Article  Google Scholar 

  • Ruhlin D, Owen R (1986) Factors influencing the rare earth element composition of hydrothermal precipitates, East Pacific rise. Initial Rep Deep Sea Drill Proj 92:383–389

    Google Scholar 

  • Ruttenberg KC (2014) The global phosphorus cycle. In: Holland HD, Turekian K (eds) Treatise on geochemistry. Elsevier Ltd., Amsterdam, pp 499–558

    Chapter  Google Scholar 

  • Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental marine environments. Limnol Oceanogr 37:1460–1482

    Article  Google Scholar 

  • Schacht U, Wallmann K, Kutterolf S, Schmidt M (2008) Volcanogenic sediment–seawater interactions and the geochemistry of pore waters. Chem Geol 249:321–338

    Article  Google Scholar 

  • Schepanski K, Tegen I, Macke A (2009) Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos Chem Phys 9:1173–1189. https://doi.org/10.5194/acp-9-1173-2009

    Article  Google Scholar 

  • Schulz HD (2006) Quantification of early diagenesis: dissolved constituents marine pore water. In: Schulz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Heidelberg, p 574

    Chapter  Google Scholar 

  • Scudder RP, Murray RW, Plank T (2009) Dispersed ash in deeply buried sediment from the Northwest Pacific Ocean: an example from the Izu–Bonin arc (ODP site 1149). Earth Planet Sci Lett 284:639–648

    Article  Google Scholar 

  • Scudder RP, Murray RW, Schindlbeck JC, Kutterolf S, Hauff F, McKinley CC (2014) Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones. Geochem Geophys Geosyst 15:4369–4379

    Article  Google Scholar 

  • Scudder RP, Murray RW, Schindlbeck JC, Kutterolf K, Hauff F, Underwood MB, Gwizd S, Lauzon R, McKinley CC (2016) Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment. Prog Earth Planet Sci:3. https://doi.org/10.1186/s40645-015-0077-y

  • Sigurdsson H, Leckie RM, Acton GD, Shipboard SP (1997) Caribbean volcanism, cretaceous/tertiary impact, and ocean climate history: synthesis of leg 165. Proc Integr Ocean Drill Program Initial Rep 165:862

    Google Scholar 

  • Sillén LG (1967) The ocean as a chemical system. Science 156:1189–1197

    Article  Google Scholar 

  • Straub SM, Schmincke HU (1998) Evaluating the tephra input into Pacific Ocean sediments: distribution in space and time. Geol Rundsch 87:461–476

    Article  Google Scholar 

  • Straub SM, Woodhead JD, Arculus RJ (2015) Temporal evolution of the Mariana arc: mantle wedge and subducted slab controls revealed with a tephra perspective. J Petrol 56:409–439

    Article  Google Scholar 

  • Stuart F. M., Lee M. R. (2012) Micrometeorites and extraterrestrial He in a ferromanganese crust from the Pacific Ocean. Chem Geol 322–323, 209–214. https://doi.org/10.1093/petrology/egv005

    Article  Google Scholar 

  • Tada R (1991) Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, New York, pp 480–491

    Google Scholar 

  • Takebe M (2005) Carriers of rare earth elements in Pacific deep-sea sediments. J Geol 113:201–215

    Article  Google Scholar 

  • Tanner PWG, Armstrong HA, Owen AW (2013) Rare earth element and La-Th-Sc analysis of cherts from the highland border complex, Scotland: geochemical determination of the sedimentary environment in greenschist facies rocks. Scott J Geol 49:15–31

    Article  Google Scholar 

  • Trendall AF, Morris RC (eds) (1983) Iron formations: facts and problems. Elsevier, Amsterdam, p 558

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant B, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21 N, East Pacific rise. Geochim Cosmochim Acta 49:2197–2220

    Article  Google Scholar 

  • Vonderhaar DL, McMurtry GM, Garge-Schoenberg D, Stueben D, Esser BK (2000) Platinum and other related element enrichments in Pacific ferromanganese crust deposits. In: Glenn CR, Prevot-Lucas L, Lucas J (eds) Marine authigenesis: from global to microbial, vol 66, Special Publication. Society for Sedimentary Geology, Tulsa, pp 287–309

    Chapter  Google Scholar 

  • Wang Y, Xu H, Merino E, Konishi H (2009) Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nat Geosci 2:781–784

    Article  Google Scholar 

  • Wen X, DeCarlo EH, Li YH (1997) Inter-element relationships in ferromanganese crusts from the central Pacific Ocean: their implications for crust genesis. Mar Geol 136:277–297

    Article  Google Scholar 

  • Williams LA, Crerar DA (1985) Silica diagenesis, II. General mechanisms. J Sediment Res 55:312–321

    Google Scholar 

  • Zhou L, Kyte FT (1992) Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea drilling project hole 596. Paleoceanography 7:441–465

    Article  Google Scholar 

  • Ziegler CL, Murray RW, Hovan SA, Rea DK (2007) Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean. Earth Planet Sci Lett 254:416–432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dunlea, A.G., Scudder, R.P., Murray, R.W. (2018). Marine Sediment. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_105

Download citation

Publish with us

Policies and ethics