Skip to main content

Chromium Isotopes

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Chromium has four naturally occurring stable isotopes (50Cr, 52Cr, 53Cr, and 54Cr) with natural abundances of 4.35%, 83.79%, 9.50%, and 2.36%, respectively. Among these, 50Cr, 52Cr, and 54Cr are nonradiogenic, while 53Cr is the radiogenic product of 53Mn, an extinct nuclide with a half-life of 3.7 Myr. Chromium isotope variations in terrestrial samples are reported using the ratio 53Cr/52Cr, expressed in conventional delta notation (δ53Cr) relative to NIST SRM 979, a metallic Cr standard from the National Institute of Standards and Technology. In meteorite samples, the ratio 54Cr/52Cr is sometimes used to report nuclear synthetic anomalies (conventionally reported in epsilon notation). Chromium isotopes have a wide range of applications in cosmochemistry, geochemistry, and environmental remediation efforts.

Introduction

The earliest work on Cr isotopes was largely focused on cosmochemical processes, namely the application of the short-lived 53Mn-53Cr radiochronometer to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ Sci Technol 40:1588–1596

    Article  Google Scholar 

  • Altman C, King EL (1961) The mechanism of the exchange of chromium(III) and chromium(VI) in acidic solutions. J Am Chem Soc 83:2825–2830

    Article  Google Scholar 

  • Bartlett R, James B (1979) Behavior of chromium in soils: III. Oxidation. J Environ Qual 8:31–35

    Article  Google Scholar 

  • Bartlett R, Kimble J (1976) Behavior of chromium in soils: II. Hexavalent forms. J Environ Qual 5:383–386

    Article  Google Scholar 

  • Basu A, Johnson TM (2012) Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Environ Sci Technol 46:5353–5360

    Article  Google Scholar 

  • Berna EC, Johnson TM, Makdisi RS, Basu A (2010) Cr stable isotopes as indicators of Cr (VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ Sci Technol 44:1043–1048

    Article  Google Scholar 

  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463

    Article  Google Scholar 

  • Birck J-L, Allègre CJ (1984) Chromium isotopic anomalies in Allende refractory inclusions. Geophys Res Lett 11:943–946

    Article  Google Scholar 

  • Birck J-L, Allègre CJ (1985) Evidence for the presence of 53Mn in the early solar system. Geophys Res Lett 12:745

    Article  Google Scholar 

  • Birck J-L, Allègre CJ (1988) Manganese chromium isotope systematics and development of the early solar system. Nature 331:579–584

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Benner SG, McRae CW, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  Google Scholar 

  • Bonnand P, James RH, Parkinson IJ, Connelly DP, Fairchild IJ (2013) The chromium isotopic composition of seawater and marine carbonates. Earth Planet Sci Lett 382:10–20

    Article  Google Scholar 

  • Bonnand P, Parkinson IJ, Anand M (2016a) Mass dependent fractionation of stable chromium isotopes in mare basalts: implications for the formation and the differentiation of the Moon. Geochim Cosmochim Acta 175:208–221

    Article  Google Scholar 

  • Bonnand P, Williams H, Parkinson I, Wood B, Halliday A (2016b) Stable chromium isotopic composition of meteorites and metal–silicate experiments: implications for fractionation during core formation. Earth Planet Sci Lett 435:14–21

    Article  Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system – 1: trace elements. J Sediment Res 50:1219–1236

    Google Scholar 

  • Buerge IJ, Hug SJ (1998) Influence of organic ligands on chromium(VI) reduction by iron(II). Environ Sci Technol 32:2092–2099

    Article  Google Scholar 

  • Cheung K, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  Google Scholar 

  • Clark SK, Johnson TM (2008) Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study. Environ Sci Technol 42:7850–7855

    Article  Google Scholar 

  • Cole DB, Reinhard CT, Wang X, Gueguen B, Halverson GP, Gibson T, Hodgskiss MSW, McKenzie NR, Lyons TW, Planavsky NJ (2016) A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44:555

    Article  Google Scholar 

  • Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  Google Scholar 

  • D’Arcy J, Babechuk MG, Døssing LN, Gaucher C, Frei R (2016) Processes controlling the chromium isotopic composition of river water: constraints from basaltic river catchments. Geochim Cosmochim Acta 186:296–315

    Article  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2002) Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295:2060

    Article  Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr (VI) reduction: lack of sorption effects. Environ Sci Technol 38:3604–3607

    Article  Google Scholar 

  • FarkaÅ¡ J, Chrastny V, Novak M, Cadkova E, Pasava J, Chakrabarti R, Jacobsen SB, Ackerman L, Bullen TD (2013) Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time. Geochim Cosmochim Acta 123:74–92

    Article  Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Article  Google Scholar 

  • Frei R, Gaucher C, Døssing LN, Sial AN (2011) Chromium isotopes in carbonates – a tracer for climate change and for reconstructing the redox state of ancient seawater. Earth Planet Sci Lett 312:114–125

    Article  Google Scholar 

  • Frei R, Gaucher C, Stolper D, Canfield DE (2013) Fluctuations in late Neoproterozoic atmospheric oxidation – Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Res 23:797–811

    Article  Google Scholar 

  • Frei R, Poiré D, Frei KM (2014) Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective. Chem Geol 381:110–124

    Article  Google Scholar 

  • Gilleaudeau G, Frei R, Kaufman A, Kah L, Azmy K, Bartley J, Chernyavskiy P, Knoll A (2016) Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates. Geochem Perspect Lett 2:178–187

    Article  Google Scholar 

  • Gueguen B, Reinhard CT, Algeo TJ, Peterson LC, Nielsen SG, Wang X, Rowe H, Planavsky NJ (2016) The chromium isotope composition of reducing and oxic marine sediments. Geochim Cosmochim Acta 184:1–19

    Article  Google Scholar 

  • Izbicki JA, Bullen TD, Martin P, Schroth B (2012) Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl Geochem 27:841–853

    Article  Google Scholar 

  • Jahn B-M, Cuvellier H (1994) Pb–Pb and U–Pb geochronology of carbonate rocks: an assessment. Chem Geol 115:125–151

    Article  Google Scholar 

  • Kaye J, Cressy P (1965) Half-life of manganese-53 from meteorite observations. J Inorg Nucl Chem 27:1889–1892

    Article  Google Scholar 

  • Lugmair GW, Shukolyukov A (1998) Early solar system timescales according to 53Mn-53Cr systematics. Geochim Cosmochim Acta 62:2863–2886

    Article  Google Scholar 

  • McKeegan KD, Davis AM (2014) Early solar system chronology. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford/San Diego, pp 431–460

    Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:0051–0054

    Article  Google Scholar 

  • Mills DB, Ward LM, Jones C, Sweeten B, Forth M, Treusch AH, Canfield DE (2014) Oxygen requirements of the earliest animals. Proc Natl Acad Sci U S A 111:4168–4172

    Article  Google Scholar 

  • Moynier F, Yin Q-Z, Schauble E (2011) Isotopic evidence of Cr partitioning into Earth’s core. Science 331:1417–1420

    Article  Google Scholar 

  • Novak M, Chrastny V, ÄŒadková E, Farkas J, Bullen T, Tylcer J, Szurmanova Z, Cron M, Prechova E, Curik J (2014) Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values. Environ Sci Technol 48:6089–6096

    Article  Google Scholar 

  • Oliver DS, Brockman FJ, Bowman RS, Kieft TL (2003) Microbial reduction of hexavalent chromium under vadose zone conditions. J Environ Qual 32:317–324

    Article  Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci U S A 104:6544–6549

    Article  Google Scholar 

  • Palmer CD, Puls RW (1994) Natural attenuation of hexavalent chromium in ground water and soils. U.S. Environmental Protection Agency Ground Water Issue. EPA/540/5-94/505, Washington DC, pp 1–12

    Google Scholar 

  • Papanastassiou DA (1986) Chromium isotopic anomalies in the Allende meteorite. Astrophys J 308:L27–L30

    Article  Google Scholar 

  • Pereira NS, Voegelin AR, Paulukat C, Sial AN, Ferreira VP, Frei R (2016) Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic. Geobiology 14:54–67

    Article  Google Scholar 

  • Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014) Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638

    Article  Google Scholar 

  • Podosek FA, Ott U, Brannon JC, Neal CR, Bernatowicz TJ (1997) Thoroughly anomalous chromium in Orgueil. Meteorit Planet Sci 32:617–627

    Article  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Geochem 14:989–1000

    Article  Google Scholar 

  • Qin L, Carlson RW (2016) Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochem J 50:43–65

    Article  Google Scholar 

  • Qin L, Wang X (2017) Chromium isotope geochemistry. Rev Mineral Geochem 82:379–414

    Article  Google Scholar 

  • Qin L, Carlson RW, Alexander CMOD (2011) Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim Cosmochim Acta 75:7806–7828

    Article  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  Google Scholar 

  • Rai D, Eary L, Zachara J (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    Article  Google Scholar 

  • Reinhard CT, Planavsky NJ, Wang X, Fischer WW, Johnson TM, Lyons TW (2014) The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin. Earth Planet Sci Lett 407:9–18

    Article  Google Scholar 

  • Rodler A, Sánchez-Pastor N, Fernández-Díaz L, Frei R (2015) Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: implications for their use as paleoclimatic proxy. Geochim Cosmochim Acta 164:221–235

    Article  Google Scholar 

  • Rotaru M, Birck J-L, Allègre CJ (1992) Clues to early solar system history from chromium isotopes in carbonaceous chondrites. Nature 358:465–470

    Article  Google Scholar 

  • Schauble E, Rossman GR, Taylor HP Jr (2004) Theoretical estimates of equilibrium chromium-isotope fractionations. Chem Geol 205:99–114

    Article  Google Scholar 

  • Scheiderich K, Amini M, Holmden C, Francois R (2015) Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth Planet Sci Lett 423:87–97

    Article  Google Scholar 

  • Schoenberg R, Zink S, Staubwasser M, Von Blanckenburg F (2008) The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem Geol 249:294–306

    Article  Google Scholar 

  • Schoenberg R, Merdian A, Holmden C, Kleinhanns IC, Haßler K, Wille M, Reitter E (2016) The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochim Cosmochim Acta 183:14–30

    Article  Google Scholar 

  • Scott K, Lu X, Cavanaugh C, Liu J (2004) Optimal methods for estimating kinetic isotope effects from different forms of the Rayleigh distillation equation. Geochim Cosmochim Acta 68:433–442

    Article  Google Scholar 

  • Shen J, Liu J, Qin L, Wang SJ, Li S, Xia J, Ke S, Yang J (2015) Chromium isotope signature during continental crust subduction recorded in metamorphic rocks. Geochem Geophys Geosyst 16:3840–3854

    Article  Google Scholar 

  • Sperling EA, Halverson GP, Knoll AH, Macdonald FA, Johnston DT (2013) A basin redox transect at the dawn of animal life. Earth Planet Sci Lett 371–372:143–155

    Article  Google Scholar 

  • Tang Y, Elzinga EJ, Jae Lee Y, Reeder RJ (2007) Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim Cosmochim Acta 71:1480–1493

    Article  Google Scholar 

  • Trinquier A, Birck J-L, Allègre CJ, Göpel C, Ulfbeck D (2008) 53Mn-53Cr systematics of the early solar system revisited. Geochim Cosmochim Acta 72:5146–5163

    Article  Google Scholar 

  • Truex M, Vermeul V, Fruchter J (2009) Treatability testing of an in situ bio-stimulation barrier for nitrate and chromium treatment. 2009 Waste Management Symposium - WM2009/WM'09: HLW, TRU, LLW/ILW, Mixed, Hazardous Wastes and Environmental Management - Waste Management for the Nuclear Renaissance, United States

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Resumed) 562–581

    Google Scholar 

  • Wang X, Johnson TM, Ellis AS (2015) Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr (III) and Cr (VI). Geochim Cosmochim Acta 153:72–90

    Article  Google Scholar 

  • Wang X, Planavsky NJ, Reinhard CT, Zou H, Ague JJ, Wu Y, Gill BC, Schwarzenbach EM, Peucker-Ehrenbrink B (2016a) Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chem Geol 423:19

    Article  Google Scholar 

  • Wang X, Planavsky NJ, Hull PM, Tripati AE, Zou HJ, Elder L, Henehan M (2016b) Chromium isotopic composition of core-top planktonic foraminifera. Geobiology 15:51–64

    Article  Google Scholar 

  • Wang X, Reinhard CT, Planavsky NJ, Owens JD, Lyons TW, Johnson TM (2016c) Sedimentary chromium isotopic compositions across the Cretaceous OSE2 at Demerara Rise Site 1258. Chem Geol 429:85–92

    Article  Google Scholar 

  • Weyer S, Schwieters J (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom Ion Process 226:355–368

    Article  Google Scholar 

  • Wilkin RT, Su C, Ford RG, Paul CJ (2005) Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ Sci Technol 39:4599–4605

    Article  Google Scholar 

  • Wu W, Wang X, Reinhard CT, Planavsky NJ (2017) Chromium isotope systematics in the Connecticut River. Chem Geol 456:98

    Article  Google Scholar 

  • Xia J, Qin L, Shen J, Carlson RW, Ionov DA, Mock TD (2017) Chromium isotope heterogeneity in the mantle. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2017.1001.1045

  • Yamakawa A, Yamashita K, Makishima A, Nakamura E (2009) Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Anal Chem 81:9787–9794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devon B. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Cole, D.B., Wang, X., Qin, L., Planavsky, N.J., Reinhard, C.T. (2018). Chromium Isotopes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_334-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_334-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics