Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Many applications of RF systems impose severe space constraints on the design of the antenna. Military aircraft, satellites, guided missiles, and mobile broadband systems (to name but a few) need low-profile antennas that effortlessly integrate into a mechanical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Gutton, G. Baissinot, Flat aerial for ultra high frequencies, French Patent 703113, 1955

    Google Scholar 

  2. P. Agrawal, M. Bailey, An analysis technique for microstrip antennas. IEEE Trans. Antennas Propag. 25(6), 4–7 (1977)

    Article  Google Scholar 

  3. Y.T. Lo, D. Solomon, W. Richards, Theory and experiment on microstrip antennas. IEEE Trans. Antennas Propag. 27(2), 137–145 (1979)

    Article  Google Scholar 

  4. W. Richards, Y. Lo, An improved theory for microstrip antennas and applications. Antennas Propag. Soc. Int. Symp. 17(1), 1979 (1979)

    Google Scholar 

  5. D.M. Pozar, Microstrip antennas. Proc. IEEE 80(1), 79–91 (1992)

    Article  Google Scholar 

  6. D. Sengupta, The transmission line model for rectangular patch antennas. Antennas and Propag. Soc. Int. Symp. 21, 158–161 (1983)

    Google Scholar 

  7. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (John Wiley & Sons Inc, Hoboken, New Jersey, 2005)

    Google Scholar 

  8. D.M. Pozar, Transmission Lines and Waveguides, Microwave Engineering, 4th edn. (John Wiley & Sons Inc, Hoboken, New Jersey, 2012)

    Google Scholar 

  9. K.C. Gupta, R. Garg, I.J. Bahl, Microstrip Lines I, Microstrip Lines and Slotlines (Artech House Inc, Dedham, Massachussets, 1979)

    Google Scholar 

  10. K. Carver, J. Mink, Microstrip antenna technology. IEEE Trans. Antennas Propag. 29(1), 2–24 (1981)

    Article  Google Scholar 

  11. C.A. Balanis, Microstrip Antennas, Antenna Theory: Analysis and Design (John Wiley & Sons Inc, Hoboken, New Jersey, 2005)

    Google Scholar 

  12. M. Weiss, Microstrip antennas for millimeter waves. IEEE Trans. Antennas Propag. 29(1), 171–174 (1981)

    Article  Google Scholar 

  13. F.K. Schwering, Millimeter wave antennas. Proc. IEEE 80(1), 92–102 (1992)

    Article  Google Scholar 

  14. D.M. Pozar, Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propag. AP-31(5), 740–747 (1983)

    Google Scholar 

  15. N.G. Alexopoulos, P.B. Katehi, D.B. Rutledge, Substrate optimization for integrated circuit antennas. Microw. Symp. Dig. 1982 IEEE MTT-S Int. M(7), 550–557 (1982)

    Google Scholar 

  16. P. Katehi, N. Alexopoulos, On the modeling of electromagnetically coupled microstrip antennas-The printed strip dipole. IEEE Trans. Antennas Propag. 32(11), 1179–1186 (1984)

    Article  Google Scholar 

  17. K. Wong, C. Tang, J. Chiou, Broad-band probe-fed patch antenna with a w-shaped ground plane. IEEE Trans. Antennas Propag. 50(6), 827–831 (2002)

    Article  Google Scholar 

  18. A. Petosa, A. Ittipiboon, N. Gangon, Suppression of unwanted probe radiation in wideband probe-fed microstrip patches. Electron. Lett. 35(5), 355–357 (1999)

    Article  Google Scholar 

  19. H.W. Lai, K.-M.L.K.-M. Luk, Design and study of wide-band patch antenna fed by meandering probe. IEEE Trans. Antennas Propag. 54(2), 564–571 (2006)

    Article  Google Scholar 

  20. T. Huynh, K.-F. Lee, Single-layer single-patch wideband microstrip antenna. Electron. Lett. 31(16), 1310 (1995)

    Article  Google Scholar 

  21. K.F. Tong, K.M. Luk, K.F. Lee, Design of a broadband U-slot patch antenna on a microwave substrate. Proc. 1997 Asia-Pacific Microw. Conf. 1, (1997)

    Google Scholar 

  22. H. Sun, Y.-X. Guo, Z. Wang, 60-GHz circularly polarized U-Slot patch antenna array on LTCC. 2IEEE Trans. Antennas Propag. 61(1), 430–435 (2013)

    Article  Google Scholar 

  23. T. Baykas, C.S. Sum, Z. Lan, J. Wang, M.A. Rahman, H. Harada, S. Kato, IEEE 802.15.3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011)

    Article  Google Scholar 

  24. C.L. Mak, K.M. Luk, K.F. Lee, Geometry of wideband small-sized antenna: vertical patch antenna. Electron. Lett. 39(25), 1777–1779 (2006)

    Article  Google Scholar 

  25. K.L. Lau, K.M. Luk, K.F. Lee, A wideband C-shaped vertical patch antenna. Asia-Pacific Microw. Conf. Proceedings, APMC, 3, 2024–2026 (2006)

    Google Scholar 

  26. K.C. Chao, F.S. Chang, H.T. Chen, C.H. Lu, Y.T. Liu, Dual-band operation vertical patch antenna for WLAN applications. IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, 3–5 (2007)

    Google Scholar 

  27. Z.H. Wu, E.K.N. Yung, Wideband circularly polarized vertical patch antenna. IEEE Trans. Antennas Propag. 56(11), 3420–3425 (2008)

    Article  Google Scholar 

  28. H. Wong, K.B. Ng, K.M. Luk, C.H. Chan, Q. Xue, Printed millimeter wave vertical patch antenna. 2010 Int. Conf. Commun. Circuits Syst. ICCCAS 2010—Proc., 647–649 (2010)

    Google Scholar 

  29. K.M. Luk, H. Wong, A new wideband unidirectional antenna element. Int. J. Microw. Opt. Technol. 1(1), 35–44 (2006)

    Google Scholar 

  30. K. Luk, H. Wong, Complementary wideband antenna, US Patent 7,843,389, 2010

    Google Scholar 

  31. B.Q. Wu, K. Luk, A Broadband Dual-Polarized Magneto-Electric, vol 8, pp. 60–63, 2009

    Google Scholar 

  32. K.M. Mak, K.M. Luk, A circularly polarized antenna with wide axial ratio beamwidth. IEEE Trans. Antennas Propag., 57(10), Part 2, pp. 3309–3312 (2009)

    Google Scholar 

  33. Z.Y. Zhang, G. Fu, S.L. Zuo, S.X. Gong, Wideband unidirectional patch antenna with r-shaped strip feed. Electron. Lett. 46(17), 1238 (2010)

    Article  Google Scholar 

  34. K.B. Ng, H. Wong, K.K. So, C.H. Chan, K.M. Luk, 60 GHz Plated through hole printed magneto-electric dipole antenna. IEEE Trans. Antennas Propag. 60(7), 3129–3136 (2012)

    Article  Google Scholar 

  35. K.B. Ng, C.H. Chan, H. Zhang, G. Zeng, Bandwidth enhancement of planar slot antenna using complementary source technique for millimeter-wave applications. IEEE Trans. Antennas Propag. 62(9), 4452–4458 (2014)

    Article  Google Scholar 

  36. M. Li, K.-M. Luk, A wideband circularly polarized antenna for microwave and millimeter-wave applications. IEEE Trans. Antennas Propag. 62(4), 1872–1879 (2014)

    Article  MathSciNet  Google Scholar 

  37. H. Yagi, Beam transmission of ultra short waves. Proc. Inst. Radio Eng. 16(6), 715–740 (1928)

    Google Scholar 

  38. J. Huang, Microstrip yagi array antenna for mobile satellite vehicle application. IEEE Trans. Antennas Propag. 7(39), 1024–1030 (1991)

    Article  Google Scholar 

  39. K. Uehara, K. Miyashita, K.-I. Natsume, K. Hatekeyama, Lens-coupled imaging arrays for the millimeter- and submillimeter-wave regions. IEEE Trans. Microw. Theory Tech. 40(5), 806–811 (1992)

    Article  Google Scholar 

  40. N. Kaneda, W.R. Deal, Y. Qian, R. Waterhouse, T. Itoh, A broadband planar quasi-yagi antenna. IEEE Trans. Antennas Propag. 50(8), 1158–1160 (2002)

    Article  Google Scholar 

  41. R.A. Alhalabi, G.M. Rebeiz, Differentially-fed millimeter-wave yagi-uda antennas with folded dipole feed. IEEE Trans. Antennas Propag., 58(3), 966–969 (2010)

    Google Scholar 

  42. P.-Y. Qin, A.R. Weily, Y.J. Guo, C.-H. Liang, Millimeter wave frequency reconfigurable quasi-yagi antenna. 2010 Asia-Pacific Microw. Conf., 642–645 (2010)

    Google Scholar 

  43. C. Luxey, L. Dussopt, J.-L. Le Sonn, J.-M. Laheurte, Dual-frequency operation of CPW-fed antenna controlled by pin diodes. Electron. Lett. 36(1), 2 (2000)

    Article  Google Scholar 

  44. Z. Briqech, A. Sebak, Low-cost 60 GHz printed Yagi antenna array. IEEE Antennas Propag. Soc. AP-S Int. Symp. 1, 7–8 (2012)

    Google Scholar 

  45. O. Kramer, T. Djerafi, K. Wu, Very small footprint 60 GHz stacked Yagi antenna array. IEEE Trans. Antennas Propag. 59(9), 3204–3210 (2011)

    Article  Google Scholar 

  46. O. Kramer, T. Djerafi, K. Wu, Vertically multilayer-stacked yagi antenna with single and dual polarizations. IEEE Trans. Antennas Propag. 58(4), 1022–1030 (2010)

    Article  Google Scholar 

  47. M. Li, K.M. Luk, Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Trans. Antennas Propag. 62(6), 3012–3018 (2014)

    Article  MathSciNet  Google Scholar 

  48. G.P. Gauthier, A. Courtay, G.M. Rebeiz, Microstrip antennas on synthesized low dielectric-constant substrates. IEEE Trans. Antennas Propag. 45(8), 1310–1314 (1997)

    Article  Google Scholar 

  49. L. Papapolymerou, R.F. Drayton, L.P.B. Katehi, Micromachined patch antennas. IEEE Trans. Antennas Propag. 46(2), 275–283 (1998)

    Article  Google Scholar 

  50. G. Gauthier, J. Raskin, L. Katehi, G. Rebeiz, A 94-GHz aperture-coupled micromachined microstrip antenna. IEEE Trans. Antennas Propag. 47(12), 1761–1766 (1999)

    Article  Google Scholar 

  51. J.G. Kim, H.S. Lee, H.S. Lee, J.B. Yoon, S. Hong, 60-GHz CPW-fed post-supported patch antenna using micromachining technology. IEEE Microw. Wirel. Components Lett. 15(10), 635–637 (2005)

    Article  Google Scholar 

  52. M.V. Lukic, D.S. Filipovic, Surface-micromachined dual ka-band cavity backed patch antenna. IEEE Trans. Antennas Propag. 55(7), 2107–2110 (2007)

    Article  Google Scholar 

  53. A.V. López, J. Papapolymerou, A. Akiba, K. Ikeda, S. Mitarai, 60 GHz micromachined patch antenna for wireless applications, 2011, pp. 515–518

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaco du Preez .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

du Preez, J., Sinha, S. (2016). Printed and Planar Antennas. In: Millimeter-Wave Antennas: Configurations and Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-35068-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35068-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35067-7

  • Online ISBN: 978-3-319-35068-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics