Skip to main content

Modulation of Hallmarks of Brain Aging by Environmental Enrichment

  • Chapter
  • First Online:
Inflammation, Aging, and Oxidative Stress

Abstract

The process of aging is manifested by reduced cognitive function and greater susceptibility to neurodegenerative disease and other brain disorders. This functional decline is thought to be the result of a combination of factors, such as reduced production of neurotrophic factors and increased oxidative stress and inflammation in the brain. However, increasing evidence suggests that the brain maintains plasticity during adulthood and aging, i.e., the capacity to induce synaptic plasticity, enhance neurogenesis, and other processes that support cognitive function. Research in animal models suggests that brain plasticity can be enhanced by experience in a complex (enriched) environment. In support of that, evidence from human studies suggests that certain lifestyle elements, such as exercise and engaging in cognitively stimulating activities, may attenuate cognitive decline. This chapter will summarize the evidence concerning the role of environmental factors in brain plasticity in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Hebb DO. The effects of early experience on problem-solving at maturity. Am Psychol. 1947;2:306–7.

    Google Scholar 

  2. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  3. Bennett EL, et al. Chemical and anatomical plasticity brain. Science. 1964;146(3644):610–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton LD, Bennett JL, Silver J. Nandrolone phenpropionate in the treatment of geriatric patients with chronic brain damage. J Am Geriatr Soc. 1964;12:373–8. (see http://www.ncbi.nlm.nih.gov/pubmed/14136815).

    Google Scholar 

  5. Volkmar FR, Greenough WT. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972;176(4042):1445–7.

    Article  CAS  PubMed  Google Scholar 

  6. Globus A, et al. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 1973;82(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  7. Turner AM, Greenough WT. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985;329(1–2):195–203.

    Article  CAS  PubMed  Google Scholar 

  8. Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:170.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shah T, et al. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry. 2014;4:e487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varma VR, et al. Low-intensity daily walking activity is associated with hippocampal volume in older adults. Hippocampus. 2015;25(5):605–15.

    Article  PubMed  Google Scholar 

  11. Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–53.

    Article  PubMed  Google Scholar 

  12. Iacono D, et al. The Nun Study: clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology. 2009;73(9):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steffener J, et al. The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PLoS One. 2014;9(3):e91196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Landau SM, et al. Association of lifetime cognitive engagement and low β-amyloid deposition. Arch Neurol. 2012;69(5):623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson RS, et al. Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology. 2013;81(4):314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    Article  CAS  PubMed  Google Scholar 

  17. Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987;223(2):284–8.

    Article  CAS  PubMed  Google Scholar 

  18. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.

    CAS  PubMed  Google Scholar 

  19. Fridovich I. Superoxide anion radical (O2 −∙), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–7.

    Article  CAS  PubMed  Google Scholar 

  20. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2–3):131–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464(7288):529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795–807.

    Article  CAS  PubMed  Google Scholar 

  23. Gamba P, et al. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Smith CD, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88(23):10540–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gemma C, et al. Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain aging: models, methods, and mechanisms. Boca Raton: CRC; 2007.

    Google Scholar 

  26. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress—implications for carcinogenesis and aging. Free Radic Biol Med. 1990;8(6):523–39.

    Article  CAS  PubMed  Google Scholar 

  27. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–81.

    CAS  PubMed  Google Scholar 

  28. Heck DE, et al. UVB light stimulates production of reactive oxygen species—unexpected role for catalase. J Biol Chem. 2003;278(25):22432–6.

    Article  CAS  PubMed  Google Scholar 

  29. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

    Article  CAS  PubMed  Google Scholar 

  30. Gavrilov LA, Gavrilova NS. Evolutionary theories of aging and longevity. ScientificWorldJournal. 2002;2:339–56.

    Article  PubMed  Google Scholar 

  31. Silhol M, et al. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience. 2005;132(3):613–24.

    Article  CAS  PubMed  Google Scholar 

  32. Matsunaga W, Isobe K, Shirokawa T. Involvement of neurotrophic factors in aging of noradrenergic innervations in hippocampus and frontal cortex. Neurosci Res. 2006;54(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  33. Mattson MP, et al. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme-activities in hippocampal-neurons. J Neurochem. 1995;65(4):1740–51.

    Article  CAS  PubMed  Google Scholar 

  34. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  35. Markham A, et al. BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci. 2004;20(5):1189–96.

    Article  CAS  PubMed  Google Scholar 

  36. Cortopassi G, Wang E. Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim Biophys Acta. 1995;1271(1):171–6.

    Article  PubMed  Google Scholar 

  37. Ikeyama S, et al. Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J. 2002;16(1):114–6.

    CAS  PubMed  Google Scholar 

  38. Guyton KZ, et al. Age-related changes in activation of mitogen-activated protein kinase cascades by oxidative stress. J Investig Dermatol Symp Proc. 1998;3(1):23–7.

    CAS  PubMed  Google Scholar 

  39. Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1:351–63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  41. Levy M, et al. Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem. 2003;278(20):17727–34.

    Article  CAS  PubMed  Google Scholar 

  42. Wang P, et al. A Drosophila temperature-sensitive seizure mutant in phosphoglycerate kinase disrupts ATP generation and alters synaptic function. J Neurosci. 2004;24(19):4518–29.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HY, et al. Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain. J Neurosci. 2011;31(36):12982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimura R, et al. Acute exposure to the mitochondrial complex I toxin rotenone impairs synaptic long-term potentiation in rat hippocampal slices. CNS Neurosci Ther. 2012;18(8):641–6.

    Article  CAS  PubMed  Google Scholar 

  45. David G, Barrett EF. Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci. 2000;20(19):7290–6.

    CAS  PubMed  Google Scholar 

  46. Verstreken P, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron. 2005;47(3):365–78.

    Article  CAS  PubMed  Google Scholar 

  47. Mattson MP. Mitochondrial regulation of neuronal plasticity. Neurochem Res. 2007;32(4–5):707–15.

    Article  CAS  PubMed  Google Scholar 

  48. Williams JM, et al. Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Mol Brain Res. 1998;60(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kudo K, et al. Age-related disturbance of memory and CREB phosphorylation in CA1 area of hippocampus of rats. Brain Res. 2005;1054(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  50. Porte Y, Buhot MC, Mons N. Alteration of CREB phosphorylation and spatial memory deficits in aged 129T2/Sv mice. Neurobiol Aging. 2008;29(10):1533–46.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102(12):4459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bevilaqua LRM, et al. Experience-dependent increase in cAMP-responsive element binding protein in synaptic and nonsynaptic mitochondria of the rat hippocampus. Eur J Neurosci. 1999;11(10):3753–6.

    Article  CAS  PubMed  Google Scholar 

  53. Waldron RT, Rozengurt E. Oxidative stress induces protein kinase D activation in intact cells. Involvement of Src and dependence on protein kinase C. J Biol Chem. 2000;275(22):17114–21.

    Article  CAS  PubMed  Google Scholar 

  54. Ozgen N, et al. Reactive oxygen species decrease cAMP response element binding protein expression in cardiomyocytes via a protein kinase D1-dependent mechanism that does not require Ser133 phosphorylation. Mol Pharmacol. 2009;76(4):896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ryu H, et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci U S A. 2005;102(39):13915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Herring A, et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  57. Cechetti F, et al. Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci. 2012;91(1–2):29–36.

    Article  CAS  PubMed  Google Scholar 

  58. Arnaiz SL, et al. Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Mol Aspects Med. 2004;25(1–2):91–101.

    Article  CAS  PubMed  Google Scholar 

  59. Lores-Arnaiz S, et al. Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production. Behav Brain Res. 2006;169(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  60. Jain V, et al. Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: role of BDNF/PI3K/GSK3beta pathway coupled with CREB activation. PLoS One. 2013;8(5):e62235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu YS, et al. Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3beta, neurotrophin-3 and CREB signaling. PLoS One. 2013;8(5):e64460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falkenberg T, et al. Increased expression of brain-derived neurotrophic factor messenger-RNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett. 1992;138(1):153–6.

    Article  CAS  PubMed  Google Scholar 

  63. Ickes BR, et al. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol. 2000;164(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  64. Gibbons TE, et al. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and beta-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res. 2014;272:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25(6):295–301.

    Article  CAS  PubMed  Google Scholar 

  66. Franceschi C, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  67. Streit WJ, et al. Dystrophic microglia in the aging human brain. Glia. 2004;45(2):208–12.

    Article  PubMed  Google Scholar 

  68. Luo XG, Ding JQ, Chen SD. Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegener. 2010;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009;64(1):110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen J, et al. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun. 2008;22(3):301–11.

    Article  CAS  PubMed  Google Scholar 

  71. Chung HY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  72. Li NX, Karin M. Is NF-kappa B the sensor of oxidative stress? FASEB J. 1999;13(10):1137–43.

    CAS  PubMed  Google Scholar 

  73. Makarov SS. NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 2000;6(11):441–8.

    Article  CAS  PubMed  Google Scholar 

  74. Marsland AL, et al. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15.

    CAS  PubMed  Google Scholar 

  76. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    CAS  PubMed  Google Scholar 

  77. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629–34.

    CAS  PubMed  Google Scholar 

  78. Ben-Hur T, et al. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24(3):623–31.

    Article  CAS  PubMed  Google Scholar 

  79. Vallieres L, et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22(2):486–92.

    CAS  PubMed  Google Scholar 

  80. Koo JW, Duman RS. IL-1 beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A. 2008;105(2):751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron. 2009;64(1):79–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Butovsky O, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31(1):149–60.

    Article  CAS  PubMed  Google Scholar 

  83. Villeda SA, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477(7362):90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Villeda SA, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20(6):659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deleidi M, Jaggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015;9:172.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kempermann G, Gast D, Gage FH. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol. 2002;52(2):135–43.

    Article  PubMed  Google Scholar 

  87. Olson AK, et al. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  88. Wilson RS, et al. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology. 2013;80(13):1202–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Arranz L, et al. Environmental enrichment improves age-related immune system impairment: long-term exposure since adulthood increases life span in mice (vol 13, pg 415, 2010). Rejuvenation Res. 2010;13(5):627.

    Article  Google Scholar 

  90. Williamson LL, Chao A, Bilbo SD. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain Behav Immun. 2012;26(3):500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gomes da Silva S, et al. Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflammation. 2013;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454(7203):463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Febbraio MA. Exercise and inflammation. J Appl Physiol. 2007;103(1):376–7.

    Article  CAS  PubMed  Google Scholar 

  94. Pinto A, et al. Effects of physical exercise on inflammatory markers of atherosclerosis. Curr Pharm Des. 2012;18(28):4326–49.

    Article  CAS  PubMed  Google Scholar 

  95. Kohut ML, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18 CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006;20(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  96. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van der Borght K, et al. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus. 2009;19(10):928–36.

    Article  PubMed  Google Scholar 

  98. Zonis S, et al. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation. 2015;12:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bajaj JS, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G168–75.

    Article  CAS  PubMed  Google Scholar 

  100. Ohland CL, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 2013;38(9):1738–47.

    Article  CAS  PubMed  Google Scholar 

  101. Duncan SH, Flint HJ. Probiotics and prebiotics and health in ageing populations. Maturitas. 2013;75(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  102. Lynch DB, et al. Diet-microbiota-health interactions in older subjects: implications for healthy aging. Interdiscip Top Gerontol. 2015;40:141–54.

    Article  CAS  PubMed  Google Scholar 

  103. Patrignani P, Tacconelli S, Bruno A. Gut microbiota, host gene expression, and aging. J Clin Gastroenterol. 2014;48 Suppl 1:S28–31.

    Article  PubMed  Google Scholar 

  104. Langille MG, et al. Microbial shifts in the aging mouse gut. Microbiome. 2014;2(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Caracciolo B, et al. Cognitive decline, dietary factors and gut-brain interactions. Mech Ageing Dev. 2014;136–137:59–69.

    Article  PubMed  Google Scholar 

  106. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–42.

    Article  CAS  PubMed  Google Scholar 

  107. Jeong JJ, et al. Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the nuclear factor-kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota. PLoS One. 2015;10(2):e0116533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jeong JJ, et al. The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol. 2015;26(2):416–22.

    Article  CAS  PubMed  Google Scholar 

  109. Sharma R, et al. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr Res. 2014;34(11):968–81.

    Article  CAS  PubMed  Google Scholar 

  110. Xiao J, et al. Lactobacillus casei-01 facilitates the ameliorative effects of proanthocyanidins extracted from lotus seedpod on learning and memory impairment in scopolamine-induced amnesia mice. PLoS One. 2014;9(11):e112773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Distrutti E, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One. 2014;9(9):e106503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nakamura S, et al. Daily feeding of fructooligosaccharide or glucomannan delays onset of senescence in SAMP8 mice. Gastroenterol Res Pract. 2014;2014:303184.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Smith CJ, et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am J Physiol Gastrointest Liver Physiol. 2014;307(8):G793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Choi JJ, et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121(6):725–30.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lambert JE, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40(7):749–52.

    Article  PubMed  Google Scholar 

  116. Petriz BA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Klaenhammer T, et al. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek. 2002;82(1–4):29–58.

    CAS  PubMed  Google Scholar 

  118. Jeong JJ, et al. Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett Appl Microbiol. 2015;60(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  119. Jeong JJ, et al. Probiotic mixture KF attenuates age-dependent memory deficit and lipidemia in Fischer 344 rats. J Microbiol Biotechnol. 2015;25(9):1532–6.

    Article  CAS  PubMed  Google Scholar 

  120. Woo JY, et al. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe. 2014;27:22–6.

    Article  CAS  PubMed  Google Scholar 

  121. Mika A, et al. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One. 2015;10(5):e0125889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Colcombe SJ, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):176–80.

    Article  PubMed  Google Scholar 

  123. Steinberg SI, et al. Exercise, sedentary pastimes, and cognitive performance in healthy older adults. Am J Alzheimers Dis Other Demen. 2015;30(3):290–8.

    Article  PubMed  Google Scholar 

  124. Okonkwo OC, et al. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014;83(19):1753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scarmeas N, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302(6):627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Johansson BB, Ohlsson AL. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol. 1996;139(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  127. Lautenschlager NT, Almeida OP. Physical activity and cognition in old age. Curr Opin Psychiatry. 2006;19(2):190–3.

    Article  PubMed  Google Scholar 

  128. Saczynski JS, et al. The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol. 2006;163(5):433–40.

    Article  PubMed  Google Scholar 

  129. Fratiglioni L, et al. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet. 2000;355(9212):1315–9.

    Article  CAS  PubMed  Google Scholar 

  130. Holwerda TJ, et al. Feelings of loneliness, but not social isolation, predict dementia onset: results from the Amsterdam Study of the Elderly (AMSTEL). J Neurol Neurosurg Psychiatry. 2014;85(2):135–42.

    Article  PubMed  Google Scholar 

  131. Wilson RS, et al. Loneliness and risk of Alzheimer disease. Arch Gen Psychiatry. 2007;64(2):234–40.

    Article  PubMed  Google Scholar 

  132. Coin A, et al. Does religiosity protect against cognitive and behavioral decline in Alzheimer’s dementia? Curr Alzheimer Res. 2010;7(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  133. Corsentino EA, et al. Religious attendance reduces cognitive decline among older women with high levels of depressive symptoms. J Gerontol A Biol Sci Med Sci. 2009;64(12):1283–9.

    Article  PubMed  Google Scholar 

  134. Hill TD, et al. Religious attendance and cognitive functioning among older Mexican Americans. J Gerontol B Psychol Sci Soc Sci. 2006;61:3–9.

    Article  Google Scholar 

  135. Kaufman Y, et al. Cognitive decline in Alzheimer disease: impact of spirituality, religiosity, and QOL. Neurology. 2007;68(18):1509–14.

    Article  PubMed  Google Scholar 

  136. Reyes-Ortiz CA, et al. Church attendance mediates the association between depressive symptoms and cognitive functioning among older Mexican Americans. J Gerontol A Biol Sci Med Sci. 2008;63(5):480–6.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Paganini-Hill A, Kawas CH, Corrada MM. Lifestyle factors and dementia in the oldest-old: the 90+ study. Alzheimer Dis Assoc Disord. 2016;30(1):21–6.

    Article  PubMed  Google Scholar 

  138. Clarke P, et al. Does the neighborhood environment modify genetic risk for cognitive decline? Gerontologist. 2014;54:64.

    Google Scholar 

  139. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60.

    Article  PubMed  Google Scholar 

  140. Steffener J, Stern Y. Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta. 2012;1822(3):467–73.

    Article  CAS  PubMed  Google Scholar 

  141. Serra L, et al. Neuroanatomical correlates of cognitive reserve in Alzheimer disease. Rejuvenation Res. 2011;14(2):143–51.

    Article  PubMed  Google Scholar 

  142. Tyas SL, et al. Healthy ageing in the Nun Study: definition and neuropathologic correlates. Age Ageing. 2007;36(6):650–5.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Farfel JM, et al. Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology. 2013;81(7):650–7.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Meng X, D’Arcy C. Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One. 2012;7(6):e38268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Valenzuela MJ, et al. Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS One. 2008;3(7):e2598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Persson J, et al. Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus. 2011;21(7):753–66.

    Article  PubMed  Google Scholar 

  147. James CE, et al. Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct. 2014;219(1):353–66.

    Article  PubMed  Google Scholar 

  148. Mechelli A, et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature. 2004;431(7010):757.

    Article  CAS  PubMed  Google Scholar 

  149. Olsen RK, et al. The effect of lifelong bilingualism on regional grey and white matter volume. Brain Res. 2015;1612:128–39.

    Article  CAS  PubMed  Google Scholar 

  150. Luk G, et al. Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci. 2011;31(46):16808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gold BT, et al. Lifelong bilingualism maintains neural efficiency for cognitive control in aging. J Neurosci. 2013;33(2):387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ljungberg JK, et al. A longitudinal study of memory advantages in bilinguals. PLoS One. 2013;8(9):e73029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grady CL, et al. Brain network activity in monolingual and bilingual older adults. Neuropsychologia. 2015;66:170–81.

    Article  PubMed  Google Scholar 

  154. Bialystok E, Craik FIM, Freedman M. Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia. 2007;45(2):459–64.

    Article  PubMed  Google Scholar 

  155. Gold BT, Johnson NF, Powell DK. Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia. 2013;51(13):2841–6.

    Article  PubMed  Google Scholar 

  156. Bak TH, et al. Does bilingualism influence cognitive aging? Ann Neurol. 2014;75(6):959–63.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yeung CM, et al. Is bilingualism associated with a lower risk of dementia in community-living older adults? Cross-sectional and prospective analyses. Alzheimer Dis Assoc Disord. 2014;28(4):326–32.

    Article  PubMed  Google Scholar 

  158. Lawton DM, Gasquoine PG, Weimer AA. Age of dementia diagnosis in community dwelling bilingual and monolingual Hispanic Americans. Cortex. 2015;66:141–5.

    Article  PubMed  Google Scholar 

  159. Engvig A, et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum Brain Mapp. 2012;33(10):2390–406.

    Article  PubMed  Google Scholar 

  160. Lövdén M, et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia. 2010;48(13):3878–83.

    Article  PubMed  Google Scholar 

  161. Takeuchi H, et al. Training of working memory impacts structural connectivity. J Neurosci. 2010;30(9):3297–303.

    Article  CAS  PubMed  Google Scholar 

  162. Erickson KI, et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol Aging. 2007;28(2):272–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Lazarov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartolotti, N., Lazarov, O. (2016). Modulation of Hallmarks of Brain Aging by Environmental Enrichment. In: Bondy, S., Campbell, A. (eds) Inflammation, Aging, and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-33486-8_16

Download citation

Publish with us

Policies and ethics