Skip to main content

Life’s Requirements

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Life on Earth is molecular in nature, with its lifelike attributes – e.g., information processing and catalysis – emerging as a result of both the specific properties of those molecules and the interactions among them. If this is a general model for life, then life must require (i) a source of energy, with which to build and sustain molecular complexity and information processing; (ii) elemental raw materials, from which to construct molecules having specific properties and reactivity; (iii) a solvent that supports the synthesis of the full range of molecules required by life and properly mediates the full range of necessary interactions among those molecules; and (iv) physicochemical conditions in which life’s molecules can be synthesized, are appropriately stable, and can interact as needed for lifelike function. For life on Earth, these general requirements, respectively, take the specific form: (i) light energy in visible-to-near-infrared wavelengths or chemical energy as provided by oxidation–reduction disequilibrium, (ii) the “biogenic” elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur) (iii) liquid water, and (iv) specific ranges in temperature, pH, salinity, pressure, and other environmental factors. Our knowledge of these factors relates to cellular life as we observe it now or can infer from the fossil or molecular records. Life’s origin may be constrained by a more stringent set of requirements that are, as yet, not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antígona S, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5:706–725

    Article  ADS  Google Scholar 

  • Arney G, Domagal-Goldman SD, Meadows VS, Wolf ET, Schwieterman E, Charnay B, Claire M, Hébrard E, Trainer MG (2016) The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16:873–899

    Article  ADS  Google Scholar 

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  ADS  Google Scholar 

  • Bains W, Seager S (2012) A combinatorial approach to biochemical space: description and application to the redox distribution of metabolism. Astrobiology 12:271–281

    Article  ADS  Google Scholar 

  • Baross J, Committee on the Limits of Organic Life in Planetary Systems (2007) The limits of organic life in planetary systems. NRC Press, Washington, DC

    Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  Google Scholar 

  • Benner SA, Kim H-J, Yang Z (2012) Setting the stage: the history, chemistry, and geobiology behind RNA. Cold Spring Harb Perspect Biol 4(1):a003541

    Article  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley, Oxford, p 296

    Google Scholar 

  • Blankenship RE, Sadekar S, Raymond J (2007) The evolutionary transition from anoxygenic to oxygenic photosynthesis A2 – Falkowski, Paul G. In: Knolls AH (ed) Evolution of primary producers in the sea. Academic, Burlington, pp 21–35

    Chapter  Google Scholar 

  • Caldwell MM (1979) Plant life and ultraviolet radiation – some perspective in the history of the Earth’s UV climate. Bioscience 29:520–525

    Article  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc B 361:1819–1836

    Article  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875

    Article  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  ADS  Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Harris RF (1961) The effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR, Elliots LF (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23–95

    Google Scholar 

  • Hoehler TM (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215

    Article  Google Scholar 

  • Hoehler TM (2007) An energy balance concept of habitability. Astrobiology 7:824–838

    Article  ADS  Google Scholar 

  • Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94

    Article  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy requirements for methanogenic archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41

    Article  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles. Kodansha Ltd. & Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Jaenicke R, Sterner R (2002) Life at high temperatures. In: Dworkin M (ed) The prokaryotes. Springer, New York

    Google Scholar 

  • Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B Biol 48:68–74

    Article  Google Scholar 

  • Jarvinen P, Oivanen M, Lonnberg H (1991) Interconversion and phosphoester hydrolysis of 2′,5′- and 3′,5′-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401

    Article  Google Scholar 

  • Johnson D, Dean DR, Smith AD, Johnson MK (2005) Structure, function and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  Google Scholar 

  • Kiang NY, Segura A, Tinetti G, Govindjee, Blankenship RE, Cohen M, Siefert J, Crisp D, Meadows VS (2007a) Spectral signatures of photosynthesis. II: coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274

    Article  ADS  Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007b) Spectral signatures of photosynthesis. I: review of Earth organisms. Astrobiology 7:222–251

    Article  ADS  Google Scholar 

  • Krulwich TA, Ivey DM (1990) Bioenergetics in extreme environments. In: Funsalus I, Sokatch J, Orston N, Krulwich TA (eds) Bacterial energetics. Academic, Orlando

    Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275:21–26

    Article  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JM (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas – distribution, abundance, and primary productivity. Deep Sea Res Part A Oceanogr Res 33:881–892

    Article  ADS  Google Scholar 

  • Marschall E, Jogler M, Henßge U, Overmann J (2010) Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362

    Article  Google Scholar 

  • McCollom TM, Amend JP (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144

    Article  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  ADS  Google Scholar 

  • Mielke SP, Kiang NY, Blankenship RE, Mauzerall D (2013) Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. BBA-Bioenergetics 1827:255–265

    Article  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    Article  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halopilism. Microbiol Mol Biol Rev 63:334–348

    Google Scholar 

  • Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci 98:805–808

    Article  ADS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B 163:224–231

    Article  ADS  Google Scholar 

  • Pohorille A, Pratt LR (2012) Is water the universal solvent for life? Orig Life Evol Biosph 42:405–409

    Article  ADS  Google Scholar 

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272

    Article  Google Scholar 

  • Renger T, Schlodder E (2008) The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. J Phys Chem B 112:7351–7354

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  ADS  Google Scholar 

  • Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344

    Article  ADS  Google Scholar 

  • Scheer H (2003) The pigments. In: Green BR, Parsons WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht

    Google Scholar 

  • Schink B (1988) Principles and limits of anaerobic degradation: environmental and technological aspects. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York

    Google Scholar 

  • Schulze-Makuch D, Irwin LN (2004) Life in the universe: expectations and constraints. Springer, Berlin

    Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    Article  ADS  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  Google Scholar 

  • Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L (2007) The lakes of Titan. Nature 445:61–64

    Article  ADS  Google Scholar 

  • Stryer L (1988) Biochemistry. W. H. Freeman & Company, New York, p 1089

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci 105:10949–10954

    Article  ADS  Google Scholar 

  • Tapia MS, Stella MA, Chirife J (2007) Effects of water activity (aw) on microbial stability: as a hurdle in food preservation. In: Barbosa-Canovas GV, Fontana AJ, Schmidt SJ, Labuzas TP (eds) Water activity in foods: fundamentals and applications. Institute of Food Technologists and Blackwell, Ames, pp 239–271

    Chapter  Google Scholar 

  • Toner JD, Catling DC, Sletten RS (2017) The geochemistry of Don Juan Pond: evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth Planet Sci Lett 474:190–197

    Article  ADS  Google Scholar 

  • Ulmer DD, Vallee BL (1971) Structure and function of metalloenzymes. Adv Chem 100:187–218

    Article  Google Scholar 

  • Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157:535–548

    Article  ADS  Google Scholar 

  • Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, Golyshin PN, Giuliano L (2007) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 1:743–755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tori M. Hoehler .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hoehler, T.M., Som, S.M., Kiang, N.Y. (2018). Life’s Requirements. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics