Skip to main content

Composition and Macrostructure of Biological Soil Crusts

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

The visible structure (>1 mm) of biocrusts is determined by both biotic and abiotic influences. First, the composing organisms and the various proportions of them have significant influence on the macrostructure of a biocrust. Second, physical parameters, such as climate, and physical and chemical soil properties impact biocrust macrostructure. In this chapter, the difference between abiotic and biotic surface crusting and influences on biocrust structure are discussed. Additionally, we summarize different approaches that were used to classify biocrusts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. doi:10.1300/J064v14n02_08

    Article  Google Scholar 

  • Assouline S (2004) Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions. Vadose Zone J 3:570–591. doi:10.2113/3.2.570

    Google Scholar 

  • Belnap J (2003) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 177–191

    Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. doi:10.1002/hyp.6325

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 3–33

    Google Scholar 

  • Belnap J, Phillips SL, Herrick JE, Johansen JR (2007) Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surf Process Landf 32:75–84

    Article  Google Scholar 

  • Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264

    Article  Google Scholar 

  • Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 141–152

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Chen Y, Tarchitzky J, Brouwer J, Morin J, Banin A (1980) Scanning electron microscope observations on soil crusts and their formation. Soil Sci 130:49–55

    Article  Google Scholar 

  • Ciani A, Goss KU, Schwarzenbach RP (2005) Light penetration in soil and particulate minerals. Eur J Soil Sci 56: 561–574

    Article  CAS  Google Scholar 

  • Colesie C, Gommeaux M, Green TGA, Büdel B (2014a) Biological soil crusts in continental Antarctica: Garwood Valley, Southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123

    Article  Google Scholar 

  • Colesie C, Green TGA, Türk R, Hogg ID, Sancho LG, Büdel B (2014b) Terrestrial biodiversity trends along the Ross Sea coastline, Antarctica: lack of latitudinal gradient, controls and potential limits to bioclimatic modeling. Polar Biol 37:1197–1208

    Article  Google Scholar 

  • Coppola A, Basile A, Wang X, Comegna V, Tedeschi A, Mele G, Comegna A (2011) Hydrological behavior of microbiotic crusts on sand dunes: example from NW China comparing infiltration in crusts and crust-removed soil. Soil Tillage Res 117:34–43

    Article  Google Scholar 

  • Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96

    Article  CAS  Google Scholar 

  • Eldridge DJ (1998) Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena 33:221–239. doi:10.1016/S0341-8162(98)00075-7

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25

    Article  Google Scholar 

  • Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad SL, Felix-Henningsen P (2014) Soil microstructure as an under-explored feature of biological soil crusts hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23:1687–1708. doi:10.1007/s10531-014-0693-7

    Article  Google Scholar 

  • Green TGA, Sancho LG, Pintado A, Schroeter B (2011) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656

    Article  Google Scholar 

  • Herrick JE, van Zee JW, Belnap J, Johansen JR, Remmenga M (2010) Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts. Catena 83:119–126

    Article  CAS  Google Scholar 

  • Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in central Europe. Geomicrobiol J 21:183–191

    Article  Google Scholar 

  • Horn R, Peth S (2012) Mechanics of unsaturated soils for agricultural applications. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, 2nd edn. CRC, Taylor & Francis Boca Raton, Boca Raton, London, pp 1–30

    Google Scholar 

  • Khalifa MA, Kumon F, Yoshida K (2009) Calcareous duricrust, Al Qasim Province, Saudi Arabia: occurrence and origin. Quat Int 209:163–174. doi:10.1016/j.quaint.2009.02.014

    Article  Google Scholar 

  • Kuske CR, Yeager CM, Johnson S, Ticknot OL, Belnap J (2011) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897. doi:10.1038/ismej.2011.153

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88. doi:10.1007/s12665-011-1066-0

    Article  Google Scholar 

  • Lemos P, Lutz JF (1957) Soil crusting and some factors affecting it. Soil Sci Soc Am J 21:485–493. doi:10.2136/sssaj1957.03615995002100050007x

    Article  Google Scholar 

  • Malam Issa O, Trichet J, Défrarg C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • Menon M, Yuan Q, Jia X, Dougill AJ, Hoon SR, Thomas AD, Williams RA (2011) Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modelling. J Hydrol 397:47–54

    Article  Google Scholar 

  • Orlovsky L, Dourikov M, Babaev A (2004) Temporal dynamics and productivity of biogenic soil crusts in the central Karakum desert, Turkmenistan. J Arid Environ 56:579–601

    Article  Google Scholar 

  • Pócs T (2009) Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Bot Hung 51:147–178. doi:10.1556/ABot.51.2009.1-2.16

    Article  Google Scholar 

  • Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur J Soil Biol 48:48–55. doi:10.1016/j.ejsobi.2011.07.009

    Article  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755

    Article  CAS  Google Scholar 

  • Valentin C, Bresson LM (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55:225–245

    Article  Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and Pedogenesis. Soil Sci Soc Am J 76:1685–1698. doi:10.2136/sssaj2012.0021

    Article  CAS  Google Scholar 

  • Woolnough WG (1927) The duricrust in Australia. J Proc R Soc NSW 61:24–53

    Google Scholar 

  • Zaady E, Katra I, Yizhaq H, Kinast S, Ashkenazy Y (2014) Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes. Aeolian Res 13:81–89

    Article  Google Scholar 

  • Zhang YM, Wang HL, Wang XQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449. doi:10.1016/j.geoderma.2005.06.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Colesie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colesie, C., Felde, V.J.M.N.L., Büdel, B. (2016). Composition and Macrostructure of Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_9

Download citation

Publish with us

Policies and ethics