Skip to main content

Composer Classification Models for Music-Theory Building

  • Chapter
  • First Online:
Computational Music Analysis

Abstract

The task of recognizing a composer by listening to a musical piece used to be reserved for experts in music theory. The problems we address here are, first, that of constructing an automatic system that is able to distinguish between music written by different composers; and, second, identifying the musical properties that are important for this task. We take a data-driven approach by scanning a large database of existing music and develop five types of classification model that can accurately discriminate between three composers (Bach, Haydn and Beethoven). More comprehensible models, such as decision trees and rulesets, are built, as well as black-box models such as support vector machines. Models of the first type offer important insights into the differences between composer styles, while those of the second type provide a performance benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backer, E. and van Kranenburg, P. (2005). On musical stylometry—a pattern recognition approach. Pattern Recognition Letters, 26(3):299–309.

    Google Scholar 

  • Berenzweig, A., Logan, B., Ellis, D., and Whitman, B. (2004). A large-scale evaluation of acoustic and subjective music-similarity measures. Computer Music Journal, 28(2):63–76.

    Google Scholar 

  • Bohak, C. and Marolt, M. (2009). Calculating similarity of folk song variants with melody-based features. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), pages 597–602, Kobe, Japan.

    Google Scholar 

  • Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., and Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4):668–696.

    Google Scholar 

  • CCARH (2012). KernScores, http://kern.ccarh.org. Last accessed: November 2012.

  • Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

    Google Scholar 

  • Chew, E., Volk, A., and Lee, C.-Y. (2005). Dance music classification using inner metric analysis. In Golden, B. L., Raghaven, S., andWasil, E. A., editors, The Next Wave in Computing, Optimization, and Decision Technologies, pages 355–370. Springer.

    Google Scholar 

  • Cohen, W. (1995). Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning, pages 115–123, Tahoe City, CA.

    Google Scholar 

  • Conklin, D. and Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24(1):51–73.

    Google Scholar 

  • Cosi, P., De Poli, G., and Lauzzana, G. (1994). Auditory modelling and selforganizing neural networks for timbre classification. Journal of New Music Research, 23(1):71–98.

    Google Scholar 

  • Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press.

    Google Scholar 

  • DeNora, T. (1997). Beethoven and the Construction of Genius: Musical Politics in Vienna, 1792-1803. University of California Press.

    Google Scholar 

  • Downie, J. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1):295–340.

    Google Scholar 

  • Eerola, T., Järvinen, T., Louhivuori, J., and Toiviainen, P. (2001). Statistical features and perceived similarity of folk melodies. Music Perception, 18(3):275–296.

    Google Scholar 

  • Eerola, T. and Toiviainen, P. (2004). MIR in Matlab: The Midi Toolbox. In Proceedings of 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 22–27, London, UK.

    Google Scholar 

  • Fawcett, T. (2004). ROC graphs: Notes and practical considerations for data mining researchers. Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA.

    Google Scholar 

  • Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The Annals Of Statistics, 28(2):337–407.

    Google Scholar 

  • Geertzen, J. and van Zaanen, M. (2008). Composer classification using grammatical inference. In Proceedings of the International Workshop on Machine Learning and Music (MML 2008), pages 17–18, Helsinki, Finland.

    Google Scholar 

  • Gheyas, I. and Smith, L. (2010). Feature subset selection in large dimensionality domains. Pattern Recognition, 43(1):5–13.

    Google Scholar 

  • Ghias, A., Logan, J., Chamberlin, D., and Smith, B. (1995). Query by humming: Musical information retrieval in an audio database. In Proceedings of the Third ACM International Conference on Multimedia, pages 231–236, San Francisco, CA.

    Google Scholar 

  • Greene, D. (1985). Greene’s Biographical Encyclopedia of Composers. The Reproducing Piano Roll Foundation. Edited by Alberg M. Petrak.

    Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389–422.

    Google Scholar 

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The Weka data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10–18.

    Google Scholar 

  • Herlands, W., Der, R., Greenberg, Y., and Levin, S. (2014). A machine learning approach to musically meaningful homogeneous style classification. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 276–282, Quebec, Canada.

    Google Scholar 

  • Herremans, D., Martens, D., and Sörensen, K. (2014). Dance hit song prediction. Journal of New Music Research, 43(3):291–302.

    Google Scholar 

  • Herremans, D., Sörensen, K., and Martens, D. (2015). Classification and generation of composer-specific music using global feature models and variable neighborhood search. Computer Music Journal, 39(3). In press.

    Google Scholar 

  • Hillewaere, R., Manderick, B., and Conklin, D. (2009). Global feature versus event models for folk song classification. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), Kobe, Japan.

    Google Scholar 

  • Hillewaere, R., Manderick, B., and Conklin, D. (2010). String quartet classification with monophonic models. In Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, The Netherlands.

    Google Scholar 

  • Hillewaere, R., Manderick, B., and Conklin, D. (2012). String methods for folk tune genre classification. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012), pages 217–222, Porto, Portugal.

    Google Scholar 

  • Hontanilla, M., Pèrez-Sancho, C., and Iñesta, J. (2013). Modeling musical style with language models for composer recognition. In Sanchez, J. M., Micó, L., and Cardoso, J., editors, Pattern Recognition and Image Analysis: 6th Iberian Conference, IbPRIA 2013, Funchal, Madeira, Portugal, June 5–7. 2013, Proceedings, volume 7887 of Lecture Notes in Computer Science, pages 740–748. Springer.

    Google Scholar 

  • Huang, W., Nakamori, Y., and Wang, S.-Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10):2513–2522.

    Google Scholar 

  • Huron, D. (2002). Music information processing using the Humdrum Toolkit: Concepts, examples, and lessons. Computer Music Journal, 26(2):11–26.

    Google Scholar 

  • Jesser, B. (1991). Interaktive Melodieanalyse. Peter Lang.

    Google Scholar 

  • John, G. and Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in Artificial Intelligence, pages 338–345, Montreal, Canada.

    Google Scholar 

  • Kaliakatsos-Papakostas, M., Epitropakis, M., and Vrahatis, M. (2011). Weighted Markov chain model for musical composer identification. In Chio, C. D., Cagnoni, S., Cotta, C., Ebner, M., and et al., A. E., editors, Applications of Evolutionary Computation, volume 6625 of Lecture Notes in Computer Science, pages 334–343. Springer.

    Google Scholar 

  • Kassler, M. (1966). Toward musical information retrieval. Perspectives of New Music, 4(2):59–67.

    Google Scholar 

  • Landwehr, N., Hall, M., and Frank, E. (2005). Logistic model trees. Machine Learning, 59(1-2):161–205.

    Google Scholar 

  • Laurier, C., Grivolla, J., and Herrera, P. (2008). Multimodal music mood classification using audio and lyrics. In Seventh International Conference on Machine Learning and Applications (ICMLA’08), pages 688–693, La Jolla, CA.

    Google Scholar 

  • Lewis, D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. In Nedellec, C. and Rouveirol, C., editors, Machine Learning: ECML-98, volume 1398 of Lecture Notes in Computer Science, pages 4–15. Springer.

    Google Scholar 

  • Li, X., Ji, G., and Bilmes, J. (2006). A factored language model of quantized pitch and duration. In International Computer Music Conference (ICMC 2006), pages 556–563, New Orleans, LA.

    Google Scholar 

  • Mandel, M. and Ellis, D. (2005). Song-level features and support vector machines for music classification. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2006), pages 594–599, London, UK.

    Google Scholar 

  • Martens, D. (2008). Building acceptable classification models for financial engineering applications. SIGKDD Explorations, 10(2):30–31.

    Google Scholar 

  • Martens, D., Baesens, B., Van Gestel, T., and Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183(3):1466–1476.

    Google Scholar 

  • Martens, D. and Provost, F. (2014). Explaining data-driven document classifications. MIS Quarterly, 38(1):73–99.

    Google Scholar 

  • Martens, D., Van Gestel, T., and Baesens, B. (2009). Decompositional rule extraction from support vector machines by active learning. IEEE Transactions on Knowledge and Data Engineering, 21(2):178–191.

    Google Scholar 

  • McKay, C. and Fujinaga, I. (2004). Automatic genre classification using large highlevel musical feature sets. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR 2004), Barcelona, Spain.

    Google Scholar 

  • McKay, C. and Fujinaga, I. (2006). jSymbolic: A feature extractor for MIDI files. In Proceedings of the International Computer Music Conference (ICMC 2006), pages 302–5, New Orleans, LA.

    Google Scholar 

  • McKay, C. and Fujinaga, I. (2007). Style-independent computer-assisted exploratory analysis of large music collections. Journal of Interdisciplinary Music Studies, 1(1):63–85.

    Google Scholar 

  • McKay, C. and Fujinaga, I. (2008). Combining features extracted from audio, symbolic and cultural sources. In Proceedings of the 9th International Society for Music Information Retrieval Conference (ISMIR 2008), pages 597–602, Philadelphia, PA.

    Google Scholar 

  • McKay, C. and Fujinaga, I. (2009). jMIR: Tools for automatic music classification. In Proceedings of the International Computer Music Conference (ICMC 2009), pages 65–8, Montreal, Canada.

    Google Scholar 

  • Mearns, L., Tidhar, D., and Dixon, S. (2010). Characterisation of composer style using high-level musical features. In Proceedings of 3rd International Workshop on Machine Learning and Music, pages 37–40, Florence, Italy.

    Google Scholar 

  • Mendel, A. (1969). Some preliminary attempts at computer-assisted style analysis in music. Computers and the Humanities, 4(1):41–52.

    Google Scholar 

  • Moreno-Seco, F., Inesta, J., Ponce de León, P. J., and Mic´o, L. (2006). Comparison of classifier fusion methods for classification in pattern recognition tasks. In Yeung, D.-Y., Kwok, J. T., Roli, A. F. F., and de Ridder, D., editors, Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17–19, 2006. Proceedings, volume 4109 of LNCS, pages 705–713. Springer.

    Google Scholar 

  • Pearce, M., Conklin, D., and Wiggins, G. (2005). Methods for combining statistical models of music. In Kronland-Martinet, R., Voinier, T., and Ystad, S., editors, Computer Music Modeling and Retrieval, volume 3902 of LNCS, pages 295–312. Springer.

    Google Scholar 

  • Pérez-Sancho, C., Rizo, D., and Inesta, J. M. (2008). Stochastic text models for music categorization. In da Vitoria Lobo, N. and others, editors, Structural, Syntactic, and Statistical Pattern Recognition, volume 5342 of LNCS, pages 55–64. Springer.

    Google Scholar 

  • Pfeiffer, S., Fischer, S., and Effelsberg, W. (1997). Automatic audio content analysis. In Proceedings of the 4th ACM International Conference on Multimedia, pages 21–30, Boston, MA.

    Google Scholar 

  • Pollastri, E. and Simoncelli, G. (2001). Classification of melodies by composer with hidden Markov models. In Web Delivering of Music, 2001. Proceedings. First International Conference on, pages 88–95. IEEE.

    Google Scholar 

  • Ponce de Léon, P. J. and IËœnesta, J. (2003). Feature-driven recognition of music styles. In Perales, F. J., Campilho, A. J. C., de la Blanca, N. P., and Sanfeliu, A., editors, Pattern Recognition and Image Analysis: First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, volume 2652 of Lecture Notes in Computer Science, pages 773–781. Springer.

    Google Scholar 

  • Quinlan, J. (1993). C4.5: Programs for Machine Learning, volume 1. Morgan Kaufmann.

    Google Scholar 

  • Ramirez, R., Maestre, E., Perez, A., and Serra, X. (2011). Automatic performer identification in Celtic violin audio recordings. Journal of New Music Research, 40(2):165–174.

    Google Scholar 

  • Rosen, C. (1997). The Classical Style: Haydn, Mozart, Beethoven, volume 1. Norton.

    Google Scholar 

  • Ruggieri, S. (2002). Efficient C4. 5 [classification algorithm]. Knowledge and Data Engineering, IEEE Transactions on, 14(2):438–444.

    Google Scholar 

  • Sapp, C. (2005). Online database of scores in the Humdrum file format. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 664–665, London, UK.

    Google Scholar 

  • Shmueli, G. and Koppius, O. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3):553–572.

    Google Scholar 

  • Steinbeck, W. (1982). Struktur und Ähnlichkeit. In Methoden automatisierter Melodieanalyse. Bärenreiter.

    Google Scholar 

  • Stenzel, U. Lima, M. and Downes, J. . (2012). Study on Digital Content Products in the EU, Framework contract: Evaluation impact assessment and related services; Lot 2: Consumer’s Policy. Technical report, EU, Brussels.

    Google Scholar 

  • Tan, P. et al. (2007). Introduction to Data Mining. Pearson Education.

    Google Scholar 

  • Tong, S. and Koller, D. (2002). Support vector machine active learning with applications to text classification. The Journal of Machine Learning Research, 2:45–66.

    Google Scholar 

  • Tseng, Y.-H. (1999). Content-based retrieval for music collections. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 176–182.

    Google Scholar 

  • Tu, J. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11):1225–1231.

    Google Scholar 

  • Typke, R., Wiering, F., and Veltkamp, R. (2005). A survey of music information retrieval systems. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 153–160, London, UK.

    Google Scholar 

  • Tzanetakis, G. and Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5):293–302.

    Google Scholar 

  • Tzanetakis, G., Ermolinskyi, A., and Cook, P. (2003). Pitch histograms in audio and symbolic music information retrieval. Journal of New Music Research, 32(2):143–152.

    Google Scholar 

  • van Kranenburg, P. (2008). On measuring musical style—The case of some disputed organ fugues in the J. S. Bach (BWV) catalogue. Computing in Musicology, 15:120–137.

    Google Scholar 

  • van Kranenburg, P. (2010). A computational approach to content-based retrieval of folk song melodies. PhD thesis, Utrecht University.

    Google Scholar 

  • van Kranenburg, P. and Backer, E. (2004). Musical style recognition—A quantitative approach. In Proceedings of the Conference on Interdisciplinary Musicology (CIM04), pages 106–107, Graz, Austria.

    Google Scholar 

  • van Kranenburg, P., Volk, A., and Wiering, F. (2013). A comparison between global and local features for computational classification of folk song melodies. Journal of New Music Research, 42(1):1–18.

    Google Scholar 

  • Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.

    Google Scholar 

  • Volk, A. and van Kranenburg, P. (2012). Melodic similarity among folk songs: An annotation study on similarity-based categorization in music. Musicae Scientiae, 16(3):317–339.

    Google Scholar 

  • Weihs, C., Ligges, U., Mörchen, F., and Müllensiefen, D. (2007). Classification in music research. Advances in Data Analysis and Classification, 1(3):255–291.

    Google Scholar 

  • Weka (2013). Weka documentation, class GridSearch. Last accessed: October 2014.

    Google Scholar 

  • Whitman, B., Flake, G., and Lawrence, S. (2001). Artist detection in music with Minnowmatch. In Neural Networks for Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal Processing Society Workshop, pages 559–568. IEEE.

    Google Scholar 

  • Whitman, B. and Smaragdis, P. (2002). Combining musical and cultural features for intelligent style detection. In Proceedings of the 3rd International Symposium on Music Information Retrieval (ISMIR 2002), pages 47–52, Paris, France.

    Google Scholar 

  • Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

    Google Scholar 

  • Wold, E., Blum, T., Keislar, D., and Wheaten, J. (1996). Content-based classification, search, and retrieval of audio. MultiMedia, IEEE, 3(3):27–36.

    Google Scholar 

  • WoÅ‚kowicz, J., Kulka, Z., and Keselj, V. (2007). N-gram-based approach to composer recognition. Master’s thesis, Warsaw University of Technology.

    Google Scholar 

  • Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorien Herremans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herremans, D., Martens, D., Sörensen, K. (2016). Composer Classification Models for Music-Theory Building. In: Meredith, D. (eds) Computational Music Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-25931-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25931-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25929-1

  • Online ISBN: 978-3-319-25931-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics