Skip to main content

14 Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina

  • Chapter
  • First Online:
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

Significant progress has been made since the previous edition of The Mycota published in 2006. The most conspicuous advances have concerned firstly our understanding of the evolution of mating-type regions in the fungal kingdom and secondly the identification of the spectrum of target genes regulated by MAT genes. The evolutionary trajectory of mating types can now be drawn as a continuous line of HMG-box gene history spanning from the early diverged fungi to the Pezizomycotina. By contrast, the relationship of the HMG-box mating-type genes with sex determination in vertebrates, and with mating types in the Basidiomycota, remains to be elucidated. Some commonalities point to a relationship between the sex determination mechanisms in vertebrates, but the evidence for an ancestral origin of sex in the Opisthokonta is not conclusive. The acquisition of mating types in the Basidiomycota is not consistent with the continuous linear evolution of HMG-box genes. Understanding why and how HMG-box mating types in the Basidiomycota have been evicted by homeobox genes is critical to complete the history of mating-type evolution and may provide a clue to the yet unexplained presence of homeobox genes in yeast (Saccharomycotina and Taphrinomycotina) mating-type loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adomas AB, Lopez-Giraldez F, Clark TA, Wang Z, Townsend JP (2010) Multi-targeted priming for genome-wide gene expression assays. BMC Genomics 11:477

    PubMed  PubMed Central  Google Scholar 

  • Ait Benkhali J, Coppin E, Brun S, Peraza-Reyes L, Martin T, Dixelius C, Lazar N, van Tilbeurgh H, Debuchy R (2013) A network of HMG-box transcription factors regulates sexual cycle in the fungus Podospora anserina. PLoS Genet 9, e1003642

    PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Vr A, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Jr C, Cotton P, Danchin EG, Da Silva C, Al G, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Cc N, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ba S, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7, e1002230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arabatzis M, Velegraki A (2013) Sexual reproduction in the opportunistic human pathogen Aspergillus terreus. Mycologia 105:71–79

    PubMed  Google Scholar 

  • Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000) Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol Plant Microbe Interact 13:1330–1339

    CAS  PubMed  Google Scholar 

  • Arnaise S, Debuchy R, Picard M (1997) What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina. Mol Gen Genet 256:169–178

    CAS  PubMed  Google Scholar 

  • Arnaise S, Zickler D, Le Bilcot S, Poisier C, Debuchy R (2001) Mutations in mating-type genes of the heterothallic fungus Podospora anserina lead to self-fertility. Genetics 159:545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badgett TC, Staben C (1999) Interaction between and transactivation by mating type polypeptides of Neurospora crassa. Fungal Genet Newslett. Suppl 42: Abstract #127

    Google Scholar 

  • Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, Richardson M, Varga J, Samson RA (2013) Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One 8, e64871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker K, Beer C, Freitag M, Kuck U (2015) Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 96:1002–1022

    CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24:1–16

    Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    PubMed  Google Scholar 

  • Bidard F, Ait Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R (2011) Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 6, e21476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bihon W, Wingfield MJ, Slippers B, Duong TA, Wingfield BD (2014) MAT gene idiomorphs suggest a heterothallic sexual cycle in a predominantly asexual and important pine pathogen. Fungal Genet Biol 62:55–61

    CAS  PubMed  Google Scholar 

  • Billiard S, Lopez-Villavicencio M, Hood ME, Giraud T (2012) Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evol Biol 25:1020–1038

    CAS  PubMed  Google Scholar 

  • Böhm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kurnsteiner H, Poggeler S, Dyer PS, Kück U (2013) Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci USA 110:1476–1481

    PubMed  PubMed Central  Google Scholar 

  • Böhm J, Dahlmann TA, Gümüşer KU (2015) A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 95:859–874

    PubMed  PubMed Central  Google Scholar 

  • Bouhouche K, Zickler D, Debuchy R, Arnaise S (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brännström IO, Ament SL, Spribille T, Scofield DG, Johannesson H (2015) Constraints on sex by a single mating-type: a case study from lichenized fungi. Fungal Genet Reports 60(Suppl): Abstract p40

    Google Scholar 

  • Brefort T, Muller P, Kahmann R (2005) The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot Cell 4:379–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler G (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23:140–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb) 95:118–128

    CAS  PubMed  Google Scholar 

  • Chilvers MI, Jones S, Meleca J, Peever TL, Pethybridge SJ, Hay FS (2014) Characterization of mating type genes supports the hypothesis that Stagonosporopsis chrysanthemi is homothallic and provides evidence that Stagonosporopsis tanaceti is heterothallic. Curr Genet 60:295–302

    CAS  PubMed  Google Scholar 

  • Chitrampalam P, Inderbitzin P, Maruthachalam K, Wu BM, Subbarao KV (2013) The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PLoS One 8, e56895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen SK, Wirsel S, Yun SH, Yoder OC, Turgeon BG (1998) The two Cochliobolus mating type genes are conserved among species but one is missing in C. victoriae. Mycol Res 102:919–929

    CAS  Google Scholar 

  • Contamine V, Zickler D, Picard M (2004) The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated. Genetics 166:135–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppin E, Arnaise S, Contamine V, Picard M (1993) Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol Gen Genet 241:409–414

    CAS  PubMed  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppin-Raynal E, Picard M, Arnaise S (1989) Transformation by integration in Podospora anserina. III. Replacement of a chromosome segment by a two-step process. Mol Gen Genet 219:270–276

    CAS  PubMed  Google Scholar 

  • Covert SF, Aoki T, O'Donnell K, Starkey D, Holliday A, Geiser DM, Cheung F, Town C, Strom A, Juba J, Scandiani M, Yang XB (2007) Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae. Fungal Genet Biol 44:799–807

    CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czaja W, Miller KY, Skinner MK, Miller BL (2014) Structural and functional conservation of fungal MatA and human SRY sex-determining proteins. Nat Commun 5:5434

    PubMed  Google Scholar 

  • Darbyshir HL, van den Vondervoort PJI, Dyer PS (2013) Discovery of a sexual reproduction in the black aspergilli. Fungal Genet Reports 60(Suppl): Abstract #687

    Google Scholar 

  • Debuchy R, Turgeon BG (2006) Mating-type structure, evolution and function in Euascomycetes. In: Kües U, Fischer R (eds) The Mycota I. Growth, differentiation and sexuality, 2nd edn. Springer, Berlin, Heidelberg, pp 293–323

    Google Scholar 

  • Debuchy R, Berteaux-Lecellier V, Silar P (2010) Mating systems and sexual morphogenesis in Ascomycetes. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 501–535

    Google Scholar 

  • Dodge BO (1942) Heterokaryotic vigor in Neurospora. BUll Torrey Bot Club 69:75–91

    Google Scholar 

  • Dyer PS (2008) Evolutionary biology: genomic clues to original sex in fungi. Curr Biol 18:R207–R209

    CAS  PubMed  Google Scholar 

  • Dyer PS, O'Gorman CM (2011) A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 14:649–654

    PubMed  Google Scholar 

  • Dyer PS, O'Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36:165–192

    CAS  PubMed  Google Scholar 

  • Dyer PS, Paoletti M (2005) Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med Mycol 43(Suppl 1):S7–S14

    CAS  PubMed  Google Scholar 

  • Dyer PS, Furneaux PA, Douhan G, Murray TD (2001) A multiplex PCR test for determination of mating type applied to the plant pathogens Tapesia yallundae and Tapesia acuformis. Fungal Genet Biol 33:173–180

    CAS  PubMed  Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    CAS  PubMed  Google Scholar 

  • Ellison CE, Stajich JE, Jacobson DJ, Natvig DO, Lapidus A, Foster B, Aerts A, Riley R, Lindquist EA, Grigoriev IV, Taylor JW (2011) Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma. Genetics 189:55–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ene IV, Bennett RJ (2014) The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol 12:239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faretra F, Pollastro S (1996) Genetic studies of the phytopathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) by analysis of ordered tetrads. Mycol Res 100:620–624

    Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4, e1000046

    PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    PubMed  PubMed Central  Google Scholar 

  • Fraser JA, Stajich JE, Tarcha EJ, Cole GT, Inglis DO, Sil A, Heitman J (2007) Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot Cell 6:622–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freihorst D, Fowler TJ, Bartholomew K, Marjatta R, Stephen Horton J, Kothe E (2016) The mating type genes of the basidiomycetes. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 329–349

    Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    CAS  PubMed  Google Scholar 

  • Galgoczy DJ, Cassidy-Stone A, Llinas M, O'Rourke SM, Herskowitz I, DeRisi JL, Johnson AD (2004) Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:18069–18074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser DM, Timberlake WE, Arnold ML (1996) Loss of meiosis in Aspergillus. Mol Biol Evol 13:809–817

    CAS  PubMed  Google Scholar 

  • Geng Y, Li Z, Xia LY, Wang Q, Hu XM, Zhang XG (2014) Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium. Mycologia 106:649–665

    CAS  PubMed  Google Scholar 

  • Glass NL, Grotelueschen J, Metzenberg RL (1990a) Neurospora crassa A mating-type region. Proc Natl Acad Sci USA 87:4912–4916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass NL, Metzenberg RL, Raju NB (1990b) Homothallic Sordariaceae from nature- the absence of strains containing only the a mating type sequence. Exp Mycol 14:274–289

    Google Scholar 

  • Groenewald M, Groenewald JZ, Harrington TC, Abeln EC, Crous PW (2006) Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genet Biol 43:813–825

    CAS  PubMed  Google Scholar 

  • Grognet P, Bidard F, Kuchly C, Tong LC, Coppin E, Benkhali JA, Couloux A, Wincker P, Debuchy R, Silar P (2014) Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics 197:421–432

    PubMed  PubMed Central  Google Scholar 

  • Grossetete S, Labedan B, Lespinet O (2010) FUNGIpath: a tool to assess fungal metabolic pathways predicted by orthology. BMC Genomics 11:81

    PubMed  PubMed Central  Google Scholar 

  • Hagen DC, Bruhn L, Westby CA, Sprague GF Jr (1993) Transcription of alpha-specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the coregulator alpha 1. Mol Cell Biol 13:6866–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallatschek O, Nelson DR (2008) Gene surfing in expanding populations. Theor Popul Biol 73:158–170

    PubMed  Google Scholar 

  • Harrington TC, McNew DL (1997) Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Curr Genet 32:52–59

    CAS  PubMed  Google Scholar 

  • Hartmann HA, Kahmann R, Bolker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15:1632–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisby's dictionary of the fungi, 8th edn. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai FY, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Grafenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Gueho-Kellermann E, Guo LD, Hibbett DS, Hong SB, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Koljalg U, Kurtzman CP, Lagneau PE, Levesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Ozic R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnurer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taskin E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SI, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    PubMed  PubMed Central  Google Scholar 

  • Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8:86–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heitman J, Kronstad JW, Taylor JW, Casselton LA (2007) Sex in fungi, molecular determination and evolutionary implication. ASM Press, Washington, DC

    Google Scholar 

  • Heitman J, Carter DA, Dyer PS, Soll DR (2014) Sexual reproduction of human fungal pathogens. In: Casadevall A, Mitchell AP, Berman J, Kwon-Chung KJ, Perfect JR, Heitman J (eds) Fungal pathogens. Cold Spring Harbor Laboratory Press, New York, pp 41–59

    Google Scholar 

  • Henk DA, Fisher MC (2011) Genetic diversity, recombination, and divergence in animal associated Penicillium dipodomyis. PLoS One 6, e22883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henk DA, Eagle CE, Brown K, Van Den Berg MA, Dyer PS, Peterson SW, Fisher MC (2011) Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Mol Ecol 20:4288–4301

    CAS  PubMed  Google Scholar 

  • Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52:536–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff B, Poggeler S, Kuck U (2008) Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann B, Eckert SE, Krappmann S, Braus GH (2001) Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horn BW, Moore GG, Carbone I (2009a) Sexual reproduction in Aspergillus flavus. Mycologia 101:423–429

    PubMed  Google Scholar 

  • Horn BW, Ramirez-Prado JH, Carbone I (2009b) Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus. Fungal Genet Biol 46:169–175

    CAS  PubMed  Google Scholar 

  • Horn BW, Moore GG, Carbone I (2011) Sexual reproduction in aflatoxin-producing Aspergillus nomius. Mycologia 103:174–183

    PubMed  Google Scholar 

  • Horn BW, Olarte RA, Peterson SW, Carbone I (2013) Sexual reproduction in Aspergillus tubingensis from section Nigri. Mycologia 105:1153–1163

    CAS  PubMed  Google Scholar 

  • Houbraken J, Dyer PS (2015) Induction of the sexual cycle in filamentous ascomycetes. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 2. Fungal biology. Springer International Publishing, Switzerland, pp 23–46

    Google Scholar 

  • Howe H (1964) Vegetative traits associated with mating type in Neurospora tetrasperma. Mycologia 56:519–525

    Google Scholar 

  • Hughes TJ, O'Donnell K, Sink S, Rooney AP, Scandiani MM, Luque A, Bhattacharyya MK, Huang X (2014) Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot. Mycologia 106:686–697

    CAS  PubMed  Google Scholar 

  • Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science 289:307–310

    CAS  PubMed  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diverged fungus. Nature 451:193–196

    CAS  PubMed  Google Scholar 

  • Inderbitzin P, Harkness J, Turgeon BG, Berbee ML (2005) Lateral transfer of mating system in Stemphylium. Proc Natl Acad Sci USA 102:11390–11395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ironside JE (2010) No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. Bioessays 32:718–726

    CAS  PubMed  Google Scholar 

  • Iyer SV, Ramakrishnan M, Kasbekar DP (2009) Neurospora crassa fmf-1 encodes the homologue of the Schizosaccharomyces pombe Ste11p regulator of sexual development. J Genet 88:33–39

    CAS  PubMed  Google Scholar 

  • Jackson D, Lawson T, Villafane R, Gary L (2013) Modeling the structure of yeast MATα1: an HMG-box motif with a C-terminal helical extension. Open J Biophys 3:1–12

    Google Scholar 

  • Jacobsen S, Wittig M, Pöggeler S (2002) Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora. Curr Genet 41:150–158

    CAS  PubMed  Google Scholar 

  • Jacobson DJ (2005) Blocked recombination along the mating-type chromosomes of Neurospora tetrasperma involves both structural heterozygosity and autosomal genes. Genetics 171:839–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Johnson TE (1979) A Neurospora mutation that arrests perithecial development as either male or female parent. Genetics 92:1107–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanematsu S, Adachi Y, Ito T (2007) Mating-type loci of heterothallic Diaporthe spp.: homologous genes are present in opposite mating-types. Curr Genet 52:11–22

    Google Scholar 

  • Kasuga T, Townsend JP, Tian C, Gilbert LB, Mannhaupt G, Taylor JW, Glass NL (2005) Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res 33:6469–6485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    CAS  PubMed  Google Scholar 

  • Kelly M, Burke J, Smith M, Klar A, Beach D (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7:1537–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerenyi Z, Moretti A, Waalwijk C, Olah B, Hornok L (2004) Mating type sequences in asexually reproducing Fusarium species. Appl Environ Microbiol 70:4419–4423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keszthelyi A, Jeney A, Kerenyi Z, Mendes O, Waalwijk C, Hornok L (2007) Tagging target genes of the MAT1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A). Antonie van Leeuwenhoek 91:373–391

    CAS  PubMed  Google Scholar 

  • King KM, West JS, Fitt BDL, Dyer PS (2014) Differences in MAT gene distribution and expression between Rhynchosporium on grasses. Plant Pathol 64(2):344–354

    Google Scholar 

  • Klar AJ (2007) Lessons learned from studies of fission yeast mating-type switching and silencing. Annu Rev Genet 41:213–236

    CAS  PubMed  Google Scholar 

  • Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Poggeler S (2010) Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell 9:894–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koopman P (2010) HMG domain superfamily of DNA-bending proteins: HMG, UBF, TCF, LEF, SOX, SRY and related proteins. Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276

    CAS  PubMed  Google Scholar 

  • Kruzel EK, Giles SS, Hull CM (2012) Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 191:435–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kück U, Pöggeler S (2009) Cryptic sex in fungi. Fungal Biol Rev 23:86–90

    Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    CAS  PubMed  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    CAS  PubMed  Google Scholar 

  • Lee J, Lee T, Lee YW, Yun SH, Turgeon BG (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50:145–152

    CAS  PubMed  Google Scholar 

  • Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74:298–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie JF, Hwang F, Doe FJ (1986) Homothallic and heterothallic isolates of Fusarium subglutinans. Phytopathology 76:1142

    Google Scholar 

  • Li W, Metin B, White TC, Heitman J (2010) Organization and evolutionary trajectory of the mating type (MAT) locus in dermatophyte and dimorphic fungal pathogens. Eukaryot Cell 9:46–58

    CAS  PubMed  Google Scholar 

  • Liberti D, Rollins JA, Harmon PF (2012) Evidence for morphological, vegetative, genetic, and mating-type diversity in Sclerotinia homoeocarpa. Phytopathology 102:506–518

    CAS  PubMed  Google Scholar 

  • Lobuglio KF, Taylor JW (2002) Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia 94:772–780

    PubMed  Google Scholar 

  • Logue ME, Wong S, Wolfe KH, Butler G (2005) A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell 4:1009–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Villavicencio M, Aguileta G, Giraud T, de Vienne DM, Lacoste S, Couloux A, Dupont J (2010) Sex in Penicillium: combined phylogenetic and experimental approaches. Fungal Genet Biol 47:693–706

    CAS  PubMed  Google Scholar 

  • Lu SW, Yun SH, Lee T, Turgeon BG (2011) Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal Genet Biol 48:714–724

    CAS  PubMed  Google Scholar 

  • Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289:310–313

    CAS  PubMed  Google Scholar 

  • Maheshwari R (1999) Microconidia of Neurospora crassa. Fungal Genet Biol 26:1–18

    CAS  PubMed  Google Scholar 

  • Mandel MA, Barker BM, Kroken S, Rounsley SD, Orbach MJ (2007) Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot Cell 6:1189–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marais G, Galtier N (2003) Sex chromosomes: how X-Y recombination stops. Curr Biol 13:R641–643

    CAS  PubMed  Google Scholar 

  • Marcou D, Masson A, Simonet JM, Piquepaille G (1979) Evidence for non-random spatial distribution of meiotic exchanges in Podospora anserina: comparison between linkage groups 1 and 6. Mol Gen Genet 176:67–79

    CAS  PubMed  Google Scholar 

  • Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R (2010) Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 5, e15199

    PubMed  PubMed Central  Google Scholar 

  • Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET (2011) Structure and evolution of the Fusarium mating type locus: new insights from the Gibberella fujikuroi complex. Fungal Genet Biol 48:731–740

    CAS  PubMed  Google Scholar 

  • Mata J, Bahler J (2006) Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci USA 103:15517–15522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieson MJ (1952) Ascospore dimorphism and mating type in Chromocrea spinulosa (Fuckel) Petch n. comb. Ann Bot 16:449–466

    Google Scholar 

  • McGuire IC, Marra RE, Milgroom MG (2004) Mating-type heterokaryosis and selfing in Cryphonectria parasitica. Fungal Genet Biol 41:521–533

    PubMed  Google Scholar 

  • Menkis A, Jacobson DJ, Gustafsson T, Johannesson H (2008) The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes. PLoS Genet 4, e1000030

    PubMed  PubMed Central  Google Scholar 

  • Merlini L, Dudin O, Martin SG (2013) Mate and fuse: how yeast cells do it. Open Biol 3:130008

    PubMed  PubMed Central  Google Scholar 

  • Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. Bioessays 12:53–59

    CAS  PubMed  Google Scholar 

  • Murata Y, Fujii M, Zolan ME, Kamada T (1998) Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149:1753–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murtagh GJ, Dyer PS, Crittenden PD (2000) Sex and the single lichen. Nature 404:564

    CAS  PubMed  Google Scholar 

  • Newmeyer D, Taylor CW (1967) A pericentric inversion in Neurospora, with unstable duplication progeny. Genetics 56:771–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Feretzaki M, Sun S, Wang X, Heitman J (2011) Sex in fungi. Annu Rev Genet 45:405–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolting N, Pöggeler S (2006a) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5:1043–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolting N, Pöggeler S (2006b) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 62:853–868

    CAS  PubMed  Google Scholar 

  • Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Linn Soc 79:69–84

    Google Scholar 

  • Nováková A, Hubka V, Dudová Z, Matsuzava T, Kubátová A, Yaguchi T, Kolařík M (2014) New species in Aspergillus section Fumigati from reclamation sites in Wyoming (U.S.A.) and revision of A. viridinutans complex. Fungal Divers 64:253–274

    Google Scholar 

  • Nygren K, Strandberg R, Wallberg A, Nabholz B, Gustafsson T, Garcia D, Cano J, Guarro J, Johannesson H (2011) A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol 59:649–663

    PubMed  Google Scholar 

  • O'Gorman CM, Fuller HT, Dyer PS (2009) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471–474

    CAS  PubMed  Google Scholar 

  • Olson E (1949) Genetics of Ceratostomella. I. Strains in Ceratostomella fimbriata (Ell. & Hals) Elliott from sweet potatoes. Phytopathology 39:548–561

    Google Scholar 

  • Otsubo Y, Yamamoto M (2013) Signaling pathways for fission yeast sexual differentiation at a glance. J Cell Sci 125:2789–2793

    Google Scholar 

  • Palmer JM, Kubatova A, Novakova A, Minnis AM, Kolarik M, Lindner DL (2014) Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 (Bethesda) 4:1755–1763

    PubMed  Google Scholar 

  • Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latge JP, Denning DW, Dyer PS (2005) Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15:1242–1248

    CAS  PubMed  Google Scholar 

  • Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, Dyer PS (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol 17:1384–1389

    CAS  PubMed  Google Scholar 

  • Papazian HP (1956) DIVISION OF MYCOLOGY: Sex and cytoplasm in the fungi. Trans N Y Acad Sci 18:388–397

    CAS  PubMed  Google Scholar 

  • Pattemore JA, Hane JK, Williams AH, Wilson BA, Stodart BJ, Ash GJ (2014) The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics 15:660

    PubMed  PubMed Central  Google Scholar 

  • Peraza-Reyes L, Malagnac F (2016) Sexual development in fungi. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 407–455

    Google Scholar 

  • Perkins DD (1987) Mating-type switching in filamentous ascomycetes. Genetics 115:215–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picard M, Debuchy R, Julien J, Brygoo Y (1987) Transformation by integration in Podospora anserina. II. Targeting to the resident locus with cosmids and instability of the transformants. Mol Gen Genet 210:129–134

    CAS  Google Scholar 

  • Picard M, Debuchy R, Coppin E (1991) Cloning the mating types of the heterothallic fungus Podospora anserina: developmental features of haploid transformants carrying both mating types. Genetics 128:539–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger TH, Atwood KC (1956) Stability of nuclear proportions during growth of Neurospora heterokaryons. Genetics 41:227–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pöggeler S, Kück U (2000) Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol Gen Genet 263:292–301

    PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U (2006) Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 275:492–503

    PubMed  Google Scholar 

  • Pöggeler S, Hoff B, Kuck U (2008) Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74:6006–6016

    PubMed  PubMed Central  Google Scholar 

  • Pontecorvo G (1946) Genetic systems based upon heterokaryosis. Cold Spring Harb Symp Quant Biol 11:193–201

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AW (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    CAS  PubMed  Google Scholar 

  • Raju NB (1992) Functional heterothallism resulting from homokaryotic conidia and ascospores in Neurospora tetrasperma. Mycol Res 96:103–116

    Google Scholar 

  • Raju NB, Perkins DD (1994) Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora. Dev Genet 15:104–118

    CAS  PubMed  Google Scholar 

  • Raju NB, Perkins DD (2000) Programmed ascospore death in the homothallic ascomycete Coniochaeta tetraspora. Fungal Genet Biol 30:213–221

    CAS  PubMed  Google Scholar 

  • Ramirez-Prado JH, Moore GG, Horn BW, Carbone I (2008) Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol 45:1292–1299

    CAS  PubMed  Google Scholar 

  • Remenyi A, Lins K, Nissen LJ, Reinbold R, Scholer HR, Wilmanns M (2003) Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 17:2048–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    CAS  PubMed  Google Scholar 

  • Robertson SJ, Bond DJ, Read ND (1998) Homothallism and heterothallism in Sordaria brevicollis. Mycol Res 102:1215–1223

    Google Scholar 

  • Roper M, Ellison C, Taylor JW, Glass NL (2011) Nuclear and genome dynamics in multinucleate ascomycete fungi. Curr Biol 21:R786–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roper M, Simonin A, Hickey PC, Leeder A, Glass NL (2013) Nuclear dynamics in a fungal chimera. Proc Natl Acad Sci USA 110:12875–12880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossignol JL, Faugeron G (1995) MIP: an epigenetic gene silencing process in Ascobolus immersus. Curr Top Microbiol Immunol 197:179–191

    CAS  PubMed  Google Scholar 

  • Rydholm C, Dyer PS, Lutzoni F (2007) DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot Cell 6:868–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salih N, Dyer P (2015) Identification of novel genes regulating sexual reproduction in Aspergillus species. Fungal Genet Reports 60 (Suppl): Abstract #575

    Google Scholar 

  • Salih N, Ashour A, Wada R, Maruyama J, Kitamoto K, Dyer P (2015) Identification of novel genes regulating sexual development in Aspergillus species by functional analysis of transcripts differentially regulated by mating-type loci. Fungal Genet Reports 60 (Suppl): Abstract #170

    Google Scholar 

  • Samils N, Gioti A, Karlsson M, Sun Y, Kasuga T, Bastiaans E, Wang Z, Li N, Townsend JP, Johannesson H (2013) Sex-linked transcriptional divergence in the hermaphrodite fungus Neurospora tetrasperma. Proc Biol Sci 280:20130862

    PubMed  PubMed Central  Google Scholar 

  • Samils N, Oliva J, Johannesson H (2014) Nuclear interactions in a heterokaryon: insight from the model Neurospora tetrasperma. Proc Biol Sci 281

    Google Scholar 

  • Scannell DR, Wolfe K (2004) Rewiring the transcriptional regulatory circuits of cells. Genome Biol 5:206

    PubMed  PubMed Central  Google Scholar 

  • Scazzocchio C (2006) Aspergillus genomes: secret sex and the secrets of sex. Trends Genet 22:521–525

    CAS  PubMed  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lucking R, Budel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O'Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    CAS  PubMed  Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613

    CAS  PubMed  Google Scholar 

  • Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996) An asexual fungus has the potential for sexual development. Mol Gen Genet 251:60–68

    CAS  PubMed  Google Scholar 

  • Shiu PK, Glass NL (2000) Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 3:183–188

    CAS  PubMed  Google Scholar 

  • Short DP, O'Donnell K, Thrane U, Nielsen KF, Zhang N, Juba JH, Geiser DM (2013) Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet Biol 53:59–70

    PubMed  Google Scholar 

  • Silar P, Barreau C, Debuchy R, Kicka S, Turcq B, Sainsard-Chanet A, Sellem CH, Billault A, Cattolico L, Duprat S, Weissenbach J (2003) Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol 39:250–263

    CAS  PubMed  Google Scholar 

  • Singh G, Dyer PS, Ashby AM (1999) Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae. Curr Genet 36:290–300

    CAS  PubMed  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7, e1002310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soullier S, Jay P, Poulat F, Vanacker JM, Berta P, Laudet V (1999) Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol 48:517–527

    CAS  PubMed  Google Scholar 

  • Souza CA, Silva CC, Ferreira AV (2003) Sex in fungi: lessons of gene regulation. Genet Mol Res 2:136–147

    PubMed  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spivakov M (2014) Spurious transcription factor binding: non-functional or genetically redundant? Bioessays 36:798–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staben C, Yanofsky C (1990) Neurospora crassa a mating-type region. Proc Natl Acad Sci USA 87:4917–4921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:1990–1999

    CAS  PubMed  Google Scholar 

  • Sun S, Hsueh YP, Heitman J (2012) Gene conversion occurs within the mating-type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet 8, e1002810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swilaiman SS, O'Gorman CM, Balajee SA, Dyer PS (2013) Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus. Eukaryot Cell 12:962–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don't cross. PLoS Biol 8, e1000326

    PubMed  PubMed Central  Google Scholar 

  • Taylor J, Jacobson D, Fisher M (1999) The evolution of asexual fungi: Reproduction, Speciation and Classification. Annu Rev Phytopathol 37:197–246

    CAS  PubMed  Google Scholar 

  • Terhem RB, Stassen J, Van Kan JA (2013) Functional analysis of genes in the mating-type locus of Botrytis cinerea. Fungal Genet Reports 60S:147

    Google Scholar 

  • Tolmsoff WJ (1983) Heteroploidy as a mechanism of variability among fungi. Annu Rev Phytopathol 21:317–340

    Google Scholar 

  • Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389–399

    CAS  PubMed  Google Scholar 

  • Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443:415–420

    CAS  PubMed  Google Scholar 

  • Tsong AE, Brian BT, Johnson AD (2007) Rewiring transcriptional circuitry: mating-type regulation in Saccharomyces cerevisiae and Candida albicans as a model for evolution. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 75–89

    Google Scholar 

  • Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6, e38

    PubMed  PubMed Central  Google Scholar 

  • Turgeon BG, Debuchy R (2007) Cochliobolus and Podospora: mechanism of sex determination and the evolution of reproductive lifestyle. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 93–121

    Google Scholar 

  • Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5

    CAS  PubMed  Google Scholar 

  • Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schafer W, Yoder OC (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284

    CAS  PubMed  Google Scholar 

  • Uhm JY, Fujii H (1983) Heterothallism and mating type mutation in Sclerotinia trifoliorum. Phytopathology 73:569–572

    Google Scholar 

  • Urban M, Kahmann R, Bolker M (1996) Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet 251:31–37

    CAS  PubMed  Google Scholar 

  • van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H (1995) Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem 270:30516–30524

    PubMed  Google Scholar 

  • Varga J, Szigeti G, Baranyi N, Kocsube S, O'Gorman CM, Dyer PS (2014) Aspergillus: sex and recombination. Mycopathologia 178:349–362

    CAS  PubMed  Google Scholar 

  • Waalwijk C, Mendes O, Verstappen EC, de Waard MA, Kema GH (2002) Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genet Biol 35:277–286

    CAS  PubMed  Google Scholar 

  • Waalwijk C, Keszthelyi A, van der Lee T, Jeney A, de Vries I, Kerenyi Z, Mendes O, Hornok L (2006) Mating type loci in Fusarium: structure and function. Mycotoxin Res 22:54–60

    CAS  PubMed  Google Scholar 

  • Wada R, Maruyama J, Yamaguchi H, Yamamoto N, Wagu Y, Paoletti M, Archer DB, Dyer PS, Kitamoto K (2012) Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 78:2819–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lin X (2011) Mechanism of unisexual mating in Cryptococcus neoformans. Fungal Genet Biol 48:651–660

    PubMed  Google Scholar 

  • Wang Z, Kin K, Lopez-Giraldez F, Johannesson H, Townsend JP (2012) Sex-specific gene expression during asexual development of Neurospora crassa. Fungal Genet Biol 49:533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Lopez-Giraldez F, Lehr N, Farre M, Common R, Trail F, Townsend JP (2014) Global gene expression and focused knockout analysis reveals genes associated with fungal fruiting body development in Neurospora crassa. Eukaryot Cell 13:154–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78:487–498

    CAS  PubMed  Google Scholar 

  • Webster RK (1967) The inheritance of sexuality, color and colony type in Ceratocystis fimbriata. Mycologia 59:222–234

    Google Scholar 

  • Webster RK, Butler EE (1967) The origin of self-fertile, cross-fertile strains in Ceratocystis fimbriata. Mycologia 59:212–221

    Google Scholar 

  • Werner MH, Huth JR, Gronenborn AM, Clore GM (1995) Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81:705–714

    CAS  PubMed  Google Scholar 

  • Whittle CA, Nygren K, Johannesson H (2011) Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Biol 48:661–667

    CAS  PubMed  Google Scholar 

  • Wik L, Karlsson M, Johannesson H (2008) The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 8:109

    PubMed  PubMed Central  Google Scholar 

  • Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD (2014) DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PLoS One 9, e92180

    PubMed  PubMed Central  Google Scholar 

  • Willer M, Hoffmann L, Styrkarsdottir U, Egel R, Davey J, Nielsen O (1995) Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe. Mol Cell Biol 15:4964–4970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AM, Godlonton T, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD (2015) Unisexual reproduction in Huntiella moniliformis. Fungal Genet Biol 80:1–9

    CAS  PubMed  Google Scholar 

  • Wirsel S, Turgeon BG, Yoder OC (1996) Deletion of the Cochliobolus heterostrophus mating-type (MAT) locus promotes the function of MAT transgenes. Curr Genet 29:241–249

    CAS  PubMed  Google Scholar 

  • Witthuhn RC, Harrington TC, Wingfield BD, Steimel JP, Wingfield MJ (2000) Deletion of the MAT-2 mating-type gene during uni-directional mating-type switching in Ceratocystis. Curr Genet 38:48–52

    CAS  PubMed  Google Scholar 

  • Woo PC, Chong KT, Tse H, Cai JJ, Lau CC, Zhou AC, Lau SK, Yuen KY (2006) Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Lett 580:3409–3416

    CAS  PubMed  Google Scholar 

  • Woudenberg JH, De Gruyter J, Crous PW, Zwiers LH (2011) Analysis of the mating-type loci of co-occurring and phylogenetically related species of Ascochyta and Phoma. Mol Plant Pathol 13:350–362

    PubMed  PubMed Central  Google Scholar 

  • Xie N, Ruprich-Robert G, Chapeland-Leclerc F, Coppin E, Debuchy R, Silar P (2015, Submitted) A genetic screen uncovers inositol-phosphate signaling as essential for sexual reproduction in Podospora anserina

    Google Scholar 

  • Yokoyama E, Arakawa M, Yamagishi K, Hara A (2006) Phylogenetic and structural analyses of the mating-type loci in Clavicipitaceae. FEMS Microbiol Lett 264:182–191

    CAS  PubMed  Google Scholar 

  • Yu JJ, Sun WX, Yu M, Yin XL, Meng XK, Zhao J, Huang L, Huang L, Liu Y (2015) Characterization of mating-type loci in rice false smut fungus Villosiclava virens. FEMS Microbiol Lett 362. doi: 10.1093/femsle/fnv014

  • Yuan YO, Stroke IL, Fields S (1993) Coupling of cell identity to signal response in yeast: interaction between the alpha 1 and STE12 proteins. Genes Dev 7:1584–1597

    CAS  PubMed  Google Scholar 

  • Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci USA 96:5592–5597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20

    CAS  PubMed  Google Scholar 

  • Zakharov IA (2005) Intratetrad mating and its genetic and evolutionary consequences. Russ J Genet 41:402–411

    CAS  Google Scholar 

  • Zheng Q, Hou R, Juanyu Z, Ma J, Wu Z, Wang G, Wang C, Xu JR (2013) The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS One 8, e66980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zickler D (2006) Meiosis in mycelial fungi. In: Kües U, Fischer R (eds) The Mycota I. Growth, differentiation and sexuality, 2nd edn. Springer, Berlin, Heidelberg, pp 415–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Debuchy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dyer, P.S., Inderbitzin, P., Debuchy, R. (2016). 14 Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina. In: Wendland, J. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-25844-7_14

Download citation

Publish with us

Policies and ethics