Skip to main content

Comparing and characterizing some constructions of canonical bases from Coxeter systems

  • Chapter
  • First Online:
Representations of Reductive Groups

Part of the book series: Progress in Mathematics ((PM,volume 312))

Abstract

The Iwahori–Hecke algebra \(\mathcal{H}\) of a Coxeter system (W, S) has a “standard basis” indexed by the elements of W and a “bar involution” given by a certain antilinear map. Together, these form an example of what Webster calls a pre-canonical structure, relative to which the well-known Kazhdan–Lusztig basis of \(\mathcal{H}\) is a canonical basis. Lusztig and Vogan defined a representation of a modified Iwahori–Hecke algebra on the free \(\mathbb{Z}[v,v^{-1}]\)-module generated by the set of twisted involutions in W, and showed that this module has a unique pre-canonical structure compatible with the \(\mathcal{H}\)-module structure, which admits its own canonical basis which can be viewed as a generalization of the Kazhdan–Lusztig basis. One can modify the definition of Lusztig and Vogan’s module to obtain other pre-canonical structures, each of which admits a unique canonical basis indexed by twisted involutions. We classify all of the pre-canonical structures which arise in this manner, and explain the relationships between their resulting canonical bases. Some of these canonical bases are equivalent in a trivial fashion to Lusztig and Vogan’s construction, while others appear to be unrelated. Along the way, we also clarify the differences between Webster’s notion of a canonical basis and the related concepts of an IC basis and a P-kernel.

Dedicated to David Vogan on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics Vol. 231. Springer, New York, 2005

    Google Scholar 

  2. F. Brenti, Twisted incidence algebras and Kazhdan–Lusztig–Stanley functions, Adv. Math. 148 (1999) 44–74.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Brenti, P-kernels, IC bases and Kazhdan–Lusztig polynomials, J. Algebra 259 (2003) 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Du, IC Bases and Quantum Linear Groups, in Algebraic Groups and Their Generalizations: Quantum and infinite dimensional methods, Proc. Sympos. Pure Math. Vol. 56, AMS, (1994), 135–148.

    Google Scholar 

  5. B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, Ann. Math. 180 (2014), no. 3, 1089–1136.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. M. Green and J. Losonczy, Canonical Bases for Hecke Algebra Quotients, Math. Res. Lett. 6 (1999), 213–222.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Hultman, Fixed points of involutive automorphisms of the Bruhat order, Adv. Math. 195 (2005), 283–296.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Hultman, The combinatorics of twisted involutions in Coxeter groups, Trans. Amer. Math. Soc. 359 (2007), 2787–2798.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Hultman, Twisted identities in Coxeter groups, J. Algebr. Combin. 28 (2008), 313–332.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Incitti, The Bruhat order on the Involutions of the Symmetric Group, J. Algebr. Combin. 20 (2004), 243–261.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Incitti, Bruhat order on the involutions of classical Weyl groups, Adv. Appl. Math. 37 (2006), 68–111.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lusztig, A bar operator for involutions in a Coxeter group, Bull. Inst. Math. Acad. Sinica (N.S.) 7 (2012), 355–404.

    Google Scholar 

  14. G. Lusztig and D. A. Vogan, Jr., Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sinica (N.S.) 7 (2012), 323–354.

    Google Scholar 

  15. G. Lusztig and D. A. Vogan, Jr., Hecke algebras and involutions in Coxeter groups, this volume.

    Google Scholar 

  16. E. Marberg, Positivity conjectures for Kazhdan–Lusztig theory on twisted involutions: the universal case, Represent. Theory 18 (2014), 88–116.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Marberg, Positivity conjectures for Kazhdan–Lusztig theory on twisted involutions: the finite case, J. Algebra 413 (2014), 198–225.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. A. Springer, Some results on algebraic groups with involutions, Advanced Studies in Pure Math. 6, 525–543, Kinokuniya/North-Holland, 1985.

    Google Scholar 

  19. R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc. 5 (1992), 805–851.

    MathSciNet  MATH  Google Scholar 

  20. R. P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge University Press, 1997.

    Book  MATH  Google Scholar 

  21. W. Soergel, Kazhdan–Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory 1 (1997), 83–114.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Webster, Canonical bases and higher representation theory, Compos. Math. 151 (2015), 121–166.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Daniel Bump, Persi Diaconis, Richard Green, George Lusztig, David Vogan, and Zhiwei Yun for helpful discussions related to the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marberg, E. (2015). Comparing and characterizing some constructions of canonical bases from Coxeter systems. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_14

Download citation

Publish with us

Policies and ethics