Skip to main content

Sleep Deprivation

  • Chapter
Sleepy or Sleepless

Abstract

The discovery of electricity and artificial extension of light phase resulted in reduction in the sleep time to maximize the work or leisure time. Schedules where work has to be done during the nighttime by sleeping in the daytime also result in reduced sleep time invariably. Thus the twenty-first-century social lifestyle is composed of less sleep in our daily routine than what we typically require resulting in a state of chronic sleep deprivation. Sleep deprivation has become a major global public health concern due to its detrimental effects on cognitive functioning, road safety, workplace errors, and metabolic and endocrine function. Increasingly, sleep deprivation is being linked to life expectancy also. A recent study by Zhang et al. showed that sleep deprivation results in the degeneration of neurons in the locus ceruleus. Hublin et al. reported that short sleep (less than 7 h) increased the risk of mortality by 26 % in men and 21 % in women compared to individuals with an average length of sleep time of 7–8 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnet MH, Arand DL. We are chronically sleep deprived. Sleep. 1995;18:908–11.

    CAS  PubMed  Google Scholar 

  2. Bliwise DL. Historical change in the report of daytime fatigue. Sleep. 1996;19(6):462.

    CAS  PubMed  Google Scholar 

  3. Johnson EO. Sleep in America: 1999. Results from the National Sleep foundations. Washington: National Sleep Foundation; 1999.

    Google Scholar 

  4. Zhang J, et al. Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons. J Neurosci. 2014;34(12):4418–31.

    PubMed Central  PubMed  Google Scholar 

  5. Hublin C, et al. Sleep and mortality: a population-based 22-year follow-up study. Sleep. 2007;30(10):1245.

    PubMed Central  PubMed  Google Scholar 

  6. Wehr TA, et al. Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol. 1993;265(4):R846–57.

    CAS  PubMed  Google Scholar 

  7. Bliwise DL, et al. Prevalence of self-reported poor sleep in a healthy population aged 50-65. Soc Sci Med. 1992;34(1):49–55.

    CAS  PubMed  Google Scholar 

  8. Carmona R. Frontiers of knowledge in sleep and sleep disorders: opportunities for improving health and quality of life. J Clin Sleep Med. 2005;1(1):83.

    PubMed  Google Scholar 

  9. de Manaceine M. Quelques observations experimentales sur l’influence de l’insomnie absolue. Arch Ital Biol. 1894;21:322–5.

    Google Scholar 

  10. Daddi L. Sulle alterazioni degli elementi del sistema nervoso centrale nell’insonnia sperimentale. Riv Pat Nerv Ment. 1898;3:1–12.

    Google Scholar 

  11. Tarozzi G. Sulle’influenza dell’insonnio sperimentale sul ricambio materiale. Riv Pat Nerv Ment. 1899;4:1–23.

    Google Scholar 

  12. Patrick G, Gilbert JA. Studies from the psychological laboratory of the University of Iowa: on the effects of loss of sleep. Psychol Rev. 1896;3(5):469.

    Google Scholar 

  13. Legendre R, Pieron H. Le probleme des facteurs du sommeil. Resultats d’ injections vasculaires et intracerebrales de liquides insomniques. C R Soc Biol (Paris). 1910;68:1077–9.

    Google Scholar 

  14. Johnson LC, Slye ES, Dement W. Electroencephalographic and autonomic activity during and after prolonged sleep deprivation. Psychosom Med. 1965;27(5):415–23.

    CAS  PubMed  Google Scholar 

  15. Webb W. Partial and differential sleep deprivation. In: Kales A, editor. Sleep, physiology and pathology: a symposium. Philadelphia: J.B. Lippincott; 1969. p. 221–31.

    Google Scholar 

  16. Kleitman N. Sleep and wakefulness. Chicago: University of Chicago Press; 1963.

    Google Scholar 

  17. Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519.

    PubMed Central  PubMed  Google Scholar 

  18. Stepanski EJ. The effect of sleep fragmentation on daytime function. Sleep. 2002;25(3):268–78.

    PubMed  Google Scholar 

  19. Dinges D, Rogers N, Baynard M. Chronic sleep deprivation. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier/Saunders; 2005. p. 67–76.

    Google Scholar 

  20. Lubin A, et al. Effects of exercise, bedrest and napping on performance decrement during 40 hours. Psychophysiology. 1976;13(4):334–9.

    CAS  PubMed  Google Scholar 

  21. Haslam BD. Sleep loss, recovery sleep, and military performance. Ergonomics. 1982;25(2):163–78.

    CAS  PubMed  Google Scholar 

  22. Rosa RR, Bonnet MH, Warm JS. Recovery of performance during sleep following sleep deprivation. Psychophysiology. 1983;20(2):152–9.

    CAS  PubMed  Google Scholar 

  23. Bonnet MH, Rosa R. Sleep and performance in young adults and older normals and insomniacs during acute sleep loss and recovery. Biol Psychol. 1987;25(2):153–72.

    CAS  PubMed  Google Scholar 

  24. Carskadon MA, Dement WC. Sleep loss in elderly volunteers. Sleep. 1985;8(3):207–21.

    CAS  PubMed  Google Scholar 

  25. Carskadon MA, Dement WC. Effects of total sleep loss on sleep tendency. Percept Mot Skills. 1979;48(2):495–506.

    CAS  PubMed  Google Scholar 

  26. Bonnet MH. Effect of 64 hours of sleep deprivation upon sleep in geriatric normals and insomniacs. Neurobiol Aging. 1986;7(2):89–96.

    CAS  PubMed  Google Scholar 

  27. Reynolds III CF, et al. Sleep deprivation as a probe in the elderly. Arch Gen Psychiatry. 1987;44(11):982.

    PubMed  Google Scholar 

  28. Borb AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;14(6):559–70.

    Google Scholar 

  29. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.

    CAS  PubMed  Google Scholar 

  30. Goichot B, et al. Nocturnal plasma thyrotropin variations are related to slow‐wave sleep. J Sleep Res. 1992;1(3):186–90.

    PubMed  Google Scholar 

  31. Weibel L, et al. Comparative effect of night and daytime sleep on the 24-hour cortisol secretory profile. Sleep. 1995;18(7):549–56.

    CAS  PubMed  Google Scholar 

  32. Follenius M, et al. Nocturnal cortisol release in relation to sleep structure. Sleep. 1992;15(1):21.

    CAS  PubMed  Google Scholar 

  33. Späth-Schwalbe E, et al. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry. 1991;29(6):575–84.

    PubMed  Google Scholar 

  34. Omisade A, Buxton OM, Rusak B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav. 2010;99(5):651–6.

    CAS  PubMed  Google Scholar 

  35. Takahashi Y, Kipnis D, Daughaday W. Growth hormone secretion during sleep. J Clin Investig. 1968;47(9):2079.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Sassin J, et al. Human growth hormone release: relation to slow-wave sleep and sleep-waking cycles. Science. 1969;165(3892):513–5.

    CAS  PubMed  Google Scholar 

  37. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21(6):553–66.

    PubMed  Google Scholar 

  38. Brandenberger G, et al. Effect of sleep deprivation on overall 24 h growth-hormone secretion. Lancet. 2000;356(9239):1408.

    CAS  PubMed  Google Scholar 

  39. Holl RW, et al. Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages. J Clin Endocrinol Metab. 1991;72(4):854–61.

    CAS  PubMed  Google Scholar 

  40. Satinoff E. Neural organization and evolution of thermal regulation in mammals. Science. 1978;201(4350):16–22.

    CAS  PubMed  Google Scholar 

  41. Schmidek WR, Zachariassen KE, Hammel HT. Total calorimetric measurements in the rat: influences of the sleep-wakefulness cycle and of the environmental temperature. Brain Res. 1983;288(1):261–71.

    CAS  PubMed  Google Scholar 

  42. Kleitman N, Ramsaroop A, Englmann T. Variations in skin temperatures of the feet and hands and the onset of sleep. In: Federation proceedings. 1948.

    Google Scholar 

  43. Kräuchi K, et al. Physiology: warm feet promote the rapid onset of sleep. Nature. 1999;401(6748):36–7.

    PubMed  Google Scholar 

  44. Murray EJ, Williams HL, Lubin A. Body temperature and psychological ratings during sleep deprivation. J Exp Psychol. 1958;56(3):271.

    CAS  PubMed  Google Scholar 

  45. Bergmann B, et al. Sleep deprivation in the rat: V. Energy use and mediation. Sleep. 1989;12(1):31–41.

    CAS  PubMed  Google Scholar 

  46. Vaara J, et al. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009;105(3):439–44.

    PubMed  Google Scholar 

  47. Fiorica V, et al. Physiological responses of men during sleep deprivation. Washington: Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine; 1970.

    Google Scholar 

  48. Young AJ, et al. Exertional fatigue, sleep loss, and negative energy balance increase susceptibility to hypothermia. J Appl Physiol. 1998;85(4):1210–7.

    CAS  PubMed  Google Scholar 

  49. Redwine L, et al. Disordered sleep, nocturnal cytokines, and immunity in alcoholics. Psychosom Med. 2003;65(1):75–85.

    CAS  PubMed  Google Scholar 

  50. Redwine L, et al. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab. 2000;85(10):3597–603.

    CAS  PubMed  Google Scholar 

  51. Born J, et al. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol. 1997;158(9):4454–64.

    CAS  PubMed  Google Scholar 

  52. Petrovsky N, Harrison LC. Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol. 1997;158(11):5163–8.

    CAS  PubMed  Google Scholar 

  53. Everson CA, Toth LA. Systemic bacterial invasion induced by sleep deprivation. Am J Physiol. 2000;278(4):R905–16.

    CAS  Google Scholar 

  54. Gangwisch JE, et al. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005;28(10):1289.

    PubMed  Google Scholar 

  55. Spiegel K, et al. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J Appl Physiol. 2005;99(5):2008–19.

    CAS  PubMed  Google Scholar 

  56. Gangwisch JE, et al. Short sleep duration as a risk factor for hypertension analyses of the First National Health and Nutrition Examination Survey. Hypertension. 2006;47(5):833–9.

    CAS  PubMed  Google Scholar 

  57. Palagini L, et al. Sleep loss and hypertension: a systematic review. Curr Pharm Des. 2013;19(13):2409–19.

    CAS  PubMed  Google Scholar 

  58. Dean E, et al. Association between habitual sleep duration and blood pressure and clinical implications: a systematic review. Blood Press. 2012;21(1):45–57.

    PubMed  Google Scholar 

  59. Ruiter M, et al. Short sleep predicts stroke symptoms in persons of normal weight. Sleep. 2012;35:A279–A279.

    Google Scholar 

  60. Sauvet F, et al. Effect of acute sleep deprivation on vascular function in healthy subjects. J Appl Physiol. 2010;108(1):68–75.

    PubMed  Google Scholar 

  61. Zhong X, et al. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol. 2005;98(6):2024–32.

    PubMed  Google Scholar 

  62. Scheen AJ, et al. Relationships between sleep quality and glucose regulation in normal humans. Am J Physiol Endocrinol Metab. 1996;271(2):E261–70.

    CAS  Google Scholar 

  63. Spiegel K, et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71.

    CAS  PubMed  Google Scholar 

  64. Spiegel K, et al. Adaptation of the 24-h growth hormone profile to a state of sleep debt. Am J Physiol. 2000;279(3):R874–83.

    CAS  Google Scholar 

  65. Vgontzas A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):2119–26.

    CAS  PubMed  Google Scholar 

  66. Vgontzas AN, et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab. 1999;84(8):2603–7.

    CAS  PubMed  Google Scholar 

  67. Modirrousta M, Mainville L, Jones BE. Orexin and MCH neurons express c‐Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci. 2005;21(10):2807–16.

    PubMed  Google Scholar 

  68. White P, et al. Electroencephalographic abnormalities during sleep as related to the temporal distribution of seizures. Epilepsia. 1962;3(2):167–74.

    CAS  PubMed  Google Scholar 

  69. Frucht MM, et al. Distribution of seizure precipitants among epilepsy syndromes. Epilepsia. 2000;41(12):1534–9.

    CAS  PubMed  Google Scholar 

  70. Kreuzer P, et al. Reduced intra-cortical inhibition after sleep deprivation: a transcranial magnetic stimulation study. Neurosci Lett. 2011;493(3):63–6.

    CAS  PubMed  Google Scholar 

  71. Haque B, et al. Precipitating and relieving factors of migraine versus tension type headache. BMC Neurol. 2012;12(1):82.

    PubMed Central  PubMed  Google Scholar 

  72. Singh NN, Sahota P. Sleep-related headache and its management. Curr Treat Options Neurol. 2013;15(6):704–22.

    PubMed  Google Scholar 

  73. Sahota RK, Dexter J. Sleep and headache syndromes: a clinical review. Headache. 1990;30(2):80–4.

    CAS  PubMed  Google Scholar 

  74. Kelman L, Rains JC. Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. Headache. 2005;45(7):904–10.

    PubMed  Google Scholar 

  75. Spierings EL, Ranke AH, Honkoop PC. Precipitating and aggravating factors of migraine versus tension‐type headache. Headache. 2001;41(6):554–8.

    CAS  PubMed  Google Scholar 

  76. Ong JC, Park M. Chronic headaches and insomnia: working toward a biobehavioral model. Cephalalgia. 2012;32(14):1059–70.

    PubMed  Google Scholar 

  77. Hedström AK, et al. Shift work at young age is associated with increased risk for multiple sclerosis. Ann Neurol. 2011;70(5):733–41.

    PubMed  Google Scholar 

  78. van Mark A, et al. The impact of shift work induced chronic circadian disruption on IL-6 and TNF-a immune responses. J Occup Med Toxicol. 2010;5:18.

    PubMed Central  PubMed  Google Scholar 

  79. Chen H, et al. A prospective study of night shift work, sleep duration, and risk of Parkinson’s disease. Am J Epidemiol. 2006;163(8):726–30.

    PubMed  Google Scholar 

  80. Gao J, et al. Daytime napping, nighttime sleeping, and Parkinson disease. Am J Epidemiol. 2011;173(9):1032–8.

    PubMed Central  PubMed  Google Scholar 

  81. Gerner RH, et al. Biological and behavioral effects of one night’s sleep deprivation in depressed patients and normals. J Psychiatr Res. 1979;15(1):21–40.

    CAS  PubMed  Google Scholar 

  82. Johnson L. Psychological and physiological changes following total sleep deprivation. In: Kales A, editor. Sleep psychology and pathology—a symposium. Philadelphia: JB Lippincott; 1969.

    Google Scholar 

  83. Aubrey J, et al. Total sleep deprivation affects memory for a previously learned route. Sleep. 1999;22:S246.

    Google Scholar 

  84. Norton R. The effects of acute sleep deprivation on selective attention. Br J Psychol. 1970;61(2):157–61.

    CAS  PubMed  Google Scholar 

  85. Brendel DH, et al. Sleep stage physiology, mood, and vigilance responses to total sleep deprivation in healthy 80‐year‐olds and 20‐year‐olds. Psychophysiology. 1990;27(6):677–85.

    CAS  PubMed  Google Scholar 

  86. Lautenbacher S, Kundermann B, Krieg J-C. Sleep deprivation and pain perception. Sleep Med Rev. 2006;10(5):357–69.

    PubMed  Google Scholar 

  87. Sivertsen B, et al. The epidemiology of insomnia: associations with physical and mental health: the HUNT-2 study. J Psychosom Res. 2009;67(2):109–16.

    PubMed  Google Scholar 

  88. Theadom A, Cropley M, Humphrey K-L. Exploring the role of sleep and coping in quality of life in fibromyalgia. J Psychosom Res. 2007;62(2):145–51.

    PubMed  Google Scholar 

  89. Taylor DJ, et al. Comorbidity of chronic insomnia with medical problems. Sleep. 2007;30(2):213.

    PubMed  Google Scholar 

  90. Haack M, Mullington JM. Sustained sleep restriction reduces emotional and physical well-being. Pain. 2005;119(1):56–64.

    PubMed  Google Scholar 

  91. Edwards RR, et al. Duration of sleep contributes to next-day pain report in the general population. Pain. 2008;137(1):202–7.

    PubMed Central  PubMed  Google Scholar 

  92. Lewandowski AS, et al. Temporal daily associations between pain and sleep in adolescents with chronic pain versus healthy adolescents. Pain. 2010;151(1):220–5.

    PubMed Central  PubMed  Google Scholar 

  93. Volkow ND, et al. Hyperstimulation of striatal D2 receptors with sleep deprivation: implications for cognitive impairment. Neuroimage. 2009;45(4):1232–40.

    PubMed Central  PubMed  Google Scholar 

  94. Nascimento DC, et al. Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain μ-opioid receptors. Behav Brain Res. 2007;178(2):216–20.

    CAS  PubMed  Google Scholar 

  95. Blanco-Centurion CA, Salin-Pascual RJ. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation. Brain Res. 2001;923(1):128–36.

    CAS  PubMed  Google Scholar 

  96. Pflug B, Tolle R. Therapy for endogenous depression by means of sleep deprivation. Der Nervenarzt. 1971;42:117–24.

    CAS  PubMed  Google Scholar 

  97. Benedetti F, Colombo C. Sleep deprivation in mood disorders. Neuropsychobiology. 2011;64(3):141–51.

    PubMed  Google Scholar 

  98. Giedke H, Wormstall H, Haffner H-T. Therapeutic sleep deprivation in depressives, restricted to the two nocturnal hours between 3: 00 and 5: 00. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14(1):37–47.

    CAS  PubMed  Google Scholar 

  99. Giedke H, Schwärzler F. Therapeutic use of sleep deprivation in depression. Sleep Med Rev. 2002;6(5):361–77.

    PubMed  Google Scholar 

  100. Gardner JP, Fornal CA, Jacobs BL. Effects of sleep deprivation on serotonergic neuronal activity in the dorsal raphe nucleus of the freely moving cat. Neuropsychopharmacology. 1997;17(2):72–81.

    CAS  PubMed  Google Scholar 

  101. Amin M, Khalid R, Khan P. Relationship between sleep deprivation and urinary MHPG levels. Int Pharmacopsychiatry. 1979;15(2):81–5.

    Google Scholar 

  102. Ebert D, Berger M. Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation. Psychopharmacology (Berl). 1998;140(1):1–10.

    CAS  Google Scholar 

  103. Gillin JC, et al. Sleep deprivation as a model experimental antidepressant treatment: findings from functional brain imaging. Depress Anxiety. 2001;14(1):37–49.

    CAS  PubMed  Google Scholar 

  104. Webb WB, Agnew H. Sleep: effects of a restricted regime. Science. 1965;150(3704):1745–7.

    CAS  PubMed  Google Scholar 

  105. Joncas S, et al. The value of sleep deprivation as a diagnostic tool in adult sleepwalkers. Neurology. 2002;58(6):936–40.

    PubMed  Google Scholar 

  106. Nielsen T, et al. Changes in cardiac variability after REM sleep deprivation in recurrent nightmares. Sleep. 2010;33(1):113.

    PubMed Central  PubMed  Google Scholar 

  107. Maycock G. Sleepiness and driving: the experience of UK car drivers. Accid Anal Prev. 1997;29(4):453–62.

    CAS  PubMed  Google Scholar 

  108. Horne JA, Reyner LA. Sleep related vehicle accidents. BMJ. 1995;310:565–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wang J-S, Knipling RR, Goodman MJ. The role of driver inattention in crashes: new statistics from the 1995 crashworthiness data system. In: 40th annual proceedings of the Association for the Advancement of Automotive Medicine. 1996.

    Google Scholar 

  110. Maycock G. Sleepiness and driving: the experience of UK car drivers. J Sleep Res. 1996;5(4):229–31.

    CAS  PubMed  Google Scholar 

  111. Harris W. Fatigue, circadian rhythm, and truck accidents. In: Vigilance. Heidelberg: Springer; 1977. p. 133–46.

    Google Scholar 

  112. Van Dongen H, Kerkhof G. Sleep loss and accidents—work hours, life style, and sleep pathology. In: Human sleep and cognition, Part II: clinical and applied research, vol. 2; 2011, p. 169.

    Google Scholar 

  113. Philip P, Åkerstedt T. Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Med Rev. 2006;10(5):347–56.

    PubMed  Google Scholar 

  114. Graeber RC. Aircrew fatigue and circadian rhythmicity. Chichester: Wiley; 1988.

    Google Scholar 

  115. Mitler MM, et al. Catastrophes, sleep, and public policy: consensus report. Sleep. 1988;11(1):100.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ross WA, RA. Pyrology, and microscopical chemistry. Science. 1880;1(16):193–5.

    Google Scholar 

  117. Boles K. Writing a policies and procedures manual for the dietary department. Hospitals. 1968;42(21):86–90.

    CAS  PubMed  Google Scholar 

  118. Herzog JH. Proprioceptive cues and their influence on operator performance in manual control. NASA CR-1248. NASA Contract Rep NASA CR. 1968:1–160.

    Google Scholar 

  119. Partridge RE, Duthie JJ. Rheumatism in dockers and civil servants. A comparison of heavy manual and sedentary workers. Ann Rheum Dis. 1968;27(6):559–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Vaughan JA, Higgins EA, Funkhouser GE. Effects of body thermal state on manual performance. Aerosp Med. 1968;39(12):1310–5.

    CAS  PubMed  Google Scholar 

  121. Friedman RC, Bigger JT, Kornfeld DS. The intern and sleep loss. N Engl J Med. 1971;285:201–3.

    CAS  PubMed  Google Scholar 

  122. Saratschev TM. [Degenerative articular and extraarticular changes of the elbow as an occupational disease of manual brakemen in railroad traffic]. Beitr Orthop Traumatol. 1968;15(8):478–81.

    Google Scholar 

  123. Reinhold H, Tillmann R. [Scheuermann’s disease as a social problem in heavy manual labor occupations]. Dtsch Gesundheitsw. 1968;23(31):1469–72.

    Google Scholar 

  124. Grantcharov TP, et al. Laparoscopic performance after one night on call in a surgical department: prospective study. BMJ. 2001;323:1222–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Landrigan CP, et al. Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med. 2004;351(18):1838–48.

    CAS  PubMed  Google Scholar 

  126. Lockley SW, et al. Effect of reducing interns’ weekly work hours on sleep and attentional failures. N Engl J Med. 2004;351(18):1829–37.

    CAS  PubMed  Google Scholar 

  127. Dinges DF. Adult napping and its effects on ability to function. In: Stampi C, editor. Why we nap. Boston: Birkhauser; 1992. p. 118–34.

    Google Scholar 

  128. Pilcher JJ, Michalowski KR, Carrigan RD. The prevalence of daytime napping and its relationship to nighttime sleep. Behav Med. 2001;27(2):71–6.

    CAS  PubMed  Google Scholar 

  129. Taub JM, Tanguay PE, Clarkson D. Effects of daytime naps on performance and mood in a college student population. J Abnorm Psychol. 1976;85(2):210.

    CAS  PubMed  Google Scholar 

  130. Evans FJ, et al. Appetitive and replacement naps: EEG and behavior. Science. 1977;197(4304):687–9.

    CAS  PubMed  Google Scholar 

  131. Lumley M, et al. The alerting effects of naps in sleep‐deprived subjects. Psychophysiology. 1986;23(4):403–8.

    CAS  PubMed  Google Scholar 

  132. Bonnet MH. Performance and sleepiness as a function of frequency and placement of sleep disruption. Psychophysiology. 1986;23(3):263–71.

    CAS  PubMed  Google Scholar 

  133. Hayashi M, Watanabe M, Hori T. The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity. Clin Neurophysiol. 1999;110(2):272–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep C. Bollu M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bollu, P.C., Goyal, M., Sahota, P. (2015). Sleep Deprivation. In: Malhotra, R. (eds) Sleepy or Sleepless. Springer, Cham. https://doi.org/10.1007/978-3-319-18054-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18054-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18053-3

  • Online ISBN: 978-3-319-18054-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics