Skip to main content

Aerobic Exercise Training: Effects on Vascular Function and Structure

  • Chapter
Effects of Exercise on Hypertension

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Aerobic exercise training reduces cardiovascular morbidity and mortality in humans. In subjects with hypertension, aerobic exercise decreases blood pressure, an effect primarily mediated by changes in peripheral vascular resistance and modification in the function and structure of macro- and micro-vessels. Aerobic exercise training also has direct anti-atherogenic impacts on artery health which decrease the risk for cardiovascular events through pathways additional to direct impacts on blood pressure. The main aim of this chapter is to summarise the effect of aerobic exercise on structural and functional characteristics of conduit and resistance arteries in humans. We provide an overview of the techniques to that are used to assess vascular structure and function followed by influence of aerobic exercise training on vascular structure and function. Potential mechanisms that contribute to vascular adaptations to aerobic exercise are then discussed. Finally, we integrate the available knowledge in this area to provide evidence-based guidelines for influence of exercise training on vascular health among individuals with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin converting enzyme

ACh:

Acetylcholine

ANG II:

Angiotensin II

BP:

Blood pressure

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

FITT:

The frequency, intensity, time, and type principle of exercise prescription

FMD:

Flow mediated dilation

HITT:

High intensity interval training

HR:

Heart rate

ICAM-1:

Intracellular adhesion molecule 1

IMT:

Intima medial thickness

MAP:

Mean arterial pressure

MCP-1:

Monocyte chemotactic protein 1

MSNA:

Muscle sympathetic nerve activity

NO:

Nitric oxide

p22-phox:

Neutrophil cytochrome b light chain

p47-phox:

47-kDa cytosolic subunit of nicotinamide adenine dinucleotide phosphate

Q:

Cardiac output

ROS:

Reactive oxygen species

SNS:

Sympathetic nervous system

SVR:

Systemic vascular resistance

VO2max :

Maximum oxygen consumption

References

  1. Booth FW, Chakravarthy MV, Spangenburg EE. Exercise and gene expression: physiological regulation of the human genome through physical activity. J Physiol. 2002;543:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blair SN, Kohl III HW, Barlow CE, Paffenbarger Jr RS, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273:1093–8.

    Article  CAS  PubMed  Google Scholar 

  3. LaMonte MJ, Blair SN, Church TS. Physical activity and diabetes prevention. J Appl Physiol. 2005;99:1205–13.

    Article  PubMed  Google Scholar 

  4. Manson JE, Hu FB, Rich-Edwards JW, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341:650–8.

    Article  CAS  PubMed  Google Scholar 

  5. Lee DC, Sui X, Artero EG, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124:2483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hakim AA, Curb JD, Petrovitch H, et al. Effects of walking on coronary heart disease in elderly men: the Honolulu Heart Program. Circulation. 1999;100:9–13.

    Article  CAS  PubMed  Google Scholar 

  7. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793–801.

    Article  PubMed  Google Scholar 

  8. Paffenbarger Jr RS, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314:605–13.

    Article  PubMed  Google Scholar 

  9. Sesso HD, Paffenbarger Jr RS, Lee IM. Physical activity and coronary heart disease in men: the Harvard Alumni Health Study. Circulation. 2000;102:975–80.

    Article  CAS  PubMed  Google Scholar 

  10. Jolliffe JA, Rees K, Taylor RS, Thompson D, Oldridge N, Ebrahim S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2001: CD001800.

    Google Scholar 

  11. Oldridge NB, Guyatt GH, Fischer ME, Rimm AA. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 1988;260:945–50.

    Article  CAS  PubMed  Google Scholar 

  12. Blair SN, Morris JN. Healthy hearts—and the universal benefits of being physically active: physical activity and health. Ann Epidemiol. 2009;19:253–6.

    Article  PubMed  Google Scholar 

  13. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–35.

    Article  CAS  PubMed  Google Scholar 

  14. Wilt TJ, Bloomfield HE, MacDonald R, et al. Effectiveness of statin therapy in adults with coronary heart disease. Arch Intern Med. 2004;164:1427–36.

    Article  CAS  PubMed  Google Scholar 

  15. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  17. Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31:639–48.

    Article  CAS  PubMed  Google Scholar 

  18. Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev. 1977;57:779–815.

    CAS  PubMed  Google Scholar 

  19. Green DJ, O’Driscoll G, Joyner MJ, Cable NT. Exercise and cardiovascular risk reduction: time to update the rationale for exercise? J Appl Physiol. 2008;105:766–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brown MD. Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol. 2003;88:645–58.

    Article  PubMed  Google Scholar 

  21. Naylor LH, Weisbrod CJ, O’Driscoll G, Green DJ. Measuring peripheral resistance and conduit arterial structure in humans using Doppler ultrasound. J Appl Physiol. 2005;98:2311–5.

    Article  PubMed  Google Scholar 

  22. Thijssen DH, Scholten RR, van den Munckhof IC, Benda N, Green DJ, Hopman MT. Acute change in vascular tone alters intima-media thickness. Hypertension. 2011;58:240–6.

    Article  CAS  PubMed  Google Scholar 

  23. Chambless LE, Shahar E, Sharrett AR, et al. Association of transient ischemic attack/stroke symptoms assessed by standardized questionnaire and algorithm with cerebrovascular risk factors and carotid artery wall thickness. The ARIC Study, 1987–1989. Am J Epidemiol. 1996;144:857–66.

    Article  CAS  PubMed  Google Scholar 

  24. Heiss G, Sharrett AR, Barnes R, Chambless LE, Szklo M, Alzola C. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol. 1991;134:250–6.

    CAS  PubMed  Google Scholar 

  25. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 1997;96:1432–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hollander M, Hak AE, Koudstaal PJ, et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke. 2003;34:2367–72.

    Article  CAS  PubMed  Google Scholar 

  27. Hollander M, Bots ML, Del Sol AI, et al. Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: the Rotterdam Study. Circulation. 2002;105:2872–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ebrahim S, Papacosta O, Whincup P, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke. 1999;30:841–50.

    Article  CAS  PubMed  Google Scholar 

  29. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  30. Johnsen SH, Mathiesen EB, Joakimsen O, et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke. 2007;38:2873–80.

    Article  PubMed  Google Scholar 

  31. Wattanakit K, Folsom AR, Selvin E, et al. Risk factors for peripheral arterial disease incidence in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis. 2005;180:389–97.

    Article  CAS  PubMed  Google Scholar 

  32. Chambless LE, Folsom AR, Davis V, et al. Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987–1998. Am J Epidemiol. 2002;155:38–47.

    Article  PubMed  Google Scholar 

  33. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  34. Lorenz MW, Polak JF, Kavousi M, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012;379:2053–62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    Article  CAS  PubMed  Google Scholar 

  36. Doshi SN, Naka KK, Payne N, et al. Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci (Lond). 2001;101:629–35.

    Article  CAS  Google Scholar 

  37. Joannides R, Haefeli WE, Linder L, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91:1314–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kooijman M, Thijssen DH, de Groot PC, et al. Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans. J Physiol. 2008;586:1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green DJ, Dawson EA, Groenewoud HM, Jones H, Thijssen DH. Is flow-mediated dilation nitric oxide mediated?: a meta-analysis. Hypertension. 2014;63:376–82.

    Article  CAS  PubMed  Google Scholar 

  40. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation. 2003;108:2049–53.

    Article  PubMed  Google Scholar 

  41. Takase B, Hamabe A, Satomura K, et al. Close relationship between the vasodilator response to acetylcholine in the brachial and coronary artery in suspected coronary artery disease. Int J Cardiol. 2005;105:58–66.

    Article  PubMed  Google Scholar 

  42. Takase B, Uehata A, Akima T, et al. Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol. 1998;82:1535–9.

    Article  CAS  PubMed  Google Scholar 

  43. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26:631–40.

    Article  PubMed  Google Scholar 

  44. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol. 2013;168:344–51.

    Article  PubMed  Google Scholar 

  45. Green DJ, Jones H, Thijssen D, Cable NT, Atkinson G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension. 2011;57:363–9.

    Article  CAS  PubMed  Google Scholar 

  46. Takeshita A, Mark AL. Decreased vasodilator capacity of forearm resistance vessels in borderline hypertension. Hypertension. 1980;2:610–6.

    Article  CAS  PubMed  Google Scholar 

  47. Patterson GC, Whelan RF. The measurement of blood flow during reactive hyperaemia in man. J Physiol. 1955;127:13–4P.

    CAS  PubMed  Google Scholar 

  48. Folkow B. The fourth Volhard lecture: cardiovascular structural adaptation; its role in the initiation and maintenance of primary hypertension. Clin Sci Mol Med. 1978;4:3s–22.

    CAS  Google Scholar 

  49. Joyner MJ, Dietz NM, Shepherd JT. From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs. J Appl Physiol. 2001;91:2431–41.

    CAS  PubMed  Google Scholar 

  50. Benjamin N, Calver A, Collier J, Robinson B, Vallance P, Webb D. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension. 1995;25:918–23.

    Article  CAS  PubMed  Google Scholar 

  51. Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR. Modification of forearm resistance vessels by exercise training in young men. J Appl Physiol. 1994;77:1829–33.

    CAS  PubMed  Google Scholar 

  52. Zeppilli P, Vannicelli R, Santini C, et al. Echocardiographic size of conductance vessels in athletes and sedentary people. Int J Sports Med. 1995;16:38–44.

    Article  CAS  PubMed  Google Scholar 

  53. Huonker M, Schmid A, Schmidt-Trucksass A, Grathwohl D, Keul J. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol. 2003;95:685–91.

    Article  CAS  PubMed  Google Scholar 

  54. Kool MJ, Wijnen JA, Hoeks AP, Struyker-Boudier HA, Van Bortel LM. Diurnal pattern of vessel-wall properties of large arteries in healthy men. J Hypertens Suppl. 1991;9:S108–9.

    Article  CAS  PubMed  Google Scholar 

  55. Wijnen JA, Kuipers H, Kool MJ, et al. Vessel wall properties of large arteries in trained and sedentary subjects. Basic Res Cardiol. 1991;86 Suppl 1:25–9.

    PubMed  Google Scholar 

  56. Rowley NJ, Dawson EA, Birk GK, et al. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol. 2011;110:1190–5.

    Article  PubMed  Google Scholar 

  57. Rowley NJ, Dawson EA, Hopman MT, et al. Conduit diameter and wall remodelling in elite athletes and spinal cord injury. Med Sci Sports Exerc. 2012;44:844–9.

    Article  PubMed  Google Scholar 

  58. Miyachi M, Iemitsu M, Okutsu M, Onodera S. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiol Scand. 1998;163:13–6.

    Article  CAS  PubMed  Google Scholar 

  59. Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S. Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol. 2001;90:2439–44.

    CAS  PubMed  Google Scholar 

  60. Spence AL, Carter HH, Naylor LH, Green DJ. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. J Physiol. 2013;591:1265–75.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tanaka H, Seals DR, Monahan KD, Clevenger CM, DeSouza CA, Dinenno FA. Regular aerobic exercise and the age-related increase in carotid artery intima-media thickness in healthy men. J Appl Physiol. 2002;92:1458–64.

    Article  PubMed  Google Scholar 

  62. Popovic M, Puchner S, Endler G, Foraschik C, Minar E, Bucek RA. The effects of endurance and recreational exercise on subclinical evidence of atherosclerosis in young adults. Am J Med Sci. 2010;339:332–6.

    Article  PubMed  Google Scholar 

  63. Moreau KL, Donato AJ, Seals DR, et al. Arterial intima-media thickness: site-specific associations with HRT and habitual exercise. Am J Physiol. 2002;283:H1409–17.

    CAS  Google Scholar 

  64. Thijssen DH, de Groot PC, Smits P, Hopman MT. Vascular adaptations to 8-week cycling training in older men. Acta Physiol (Oxf). 2007;190(3):221–8.

    Article  CAS  Google Scholar 

  65. Rakobowchuk M, McGowan CL, de Groot PC, Hartman JW, Phillips SM, MacDonald MJ. Endothelial function of young healthy males following whole body resistance training. J Appl Physiol. 2005;98:2185–90.

    Article  CAS  PubMed  Google Scholar 

  66. Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534:287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moreau KL, Silver AE, Dinenno FA, Seals DR. Habitual aerobic exercise is associated with smaller femoral artery intima-media thickness with age in healthy men and women. Eur J Cardiovasc Prev Rehabil. 2006;13:805–11.

    Article  PubMed  Google Scholar 

  68. Green DJ, Swart A, Exterkate A, et al. Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans. Atherosclerosis. 2010;210:525–30.

    Article  CAS  PubMed  Google Scholar 

  69. Thijssen DH, Cable NT, Green DJ. Impact of exercise training on arterial wall thickness in humans. Clin Sci. 2012;122:311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jae SY, Carnethon MR, Heffernan KS, Choi YH, Lee MK, Fernhall B. Association between cardiorespiratory fitness and prevalence of carotid atherosclerosis among men with hypertension. Am Heart J. 2007;153:1001–5.

    Article  PubMed  Google Scholar 

  71. Palatini P, Puato M, Rattazzi M, Pauletto P. Effect of regular physical activity on carotid intima-media thickness. Results from a 6-year prospective study in the early stage of hypertension. Blood Press. 2010;20:37–44.

    Article  PubMed  Google Scholar 

  72. Sinoway LI, Musch TI, Minotti JR, Zelis R. Enhanced maximal metabolic vasodilatation in the dominant forearms of tennis players. J Appl Physiol. 1986;61:673–8.

    CAS  PubMed  Google Scholar 

  73. Green DJ, Fowler DT, O’Driscoll JG, Blanksby BA, Taylor RR. Endothelium-derived nitric oxide activity in forearm vessels of tennis players. J Appl Physiol. 1996;81:943–8.

    CAS  PubMed  Google Scholar 

  74. Martin III WH, Kohrt WM, Malley MT, Korte E, Stoltz S. Exercise training enhances leg vasodilatory capacity of 65-yr-old men and women. J Appl Physiol. 1990;69:1804–9.

    PubMed  Google Scholar 

  75. Martin III WH, Montgomery J, Snell PG, et al. Cardiovascular adaptations to intense swim training in sedentary middle-aged men and women. Circulation. 1987;75:323–30.

    Article  PubMed  Google Scholar 

  76. Silber D, McLaughlin D, Sinoway L. Leg exercise conditioning increases peak forearm blood flow. J Appl Physiol. 1991;71:1568–73.

    CAS  PubMed  Google Scholar 

  77. Higashi Y, Sasaki S, Sasaki N, et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension. 1999;33:591–7.

    Article  CAS  PubMed  Google Scholar 

  78. Andersen P, Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol. 1977;270:677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maxwell LC, White TP, Faulkner JA. Oxidative capacity, blood flow, and capillarity of skeletal muscles. J Appl Physiol. 1980;49:627–33.

    CAS  PubMed  Google Scholar 

  80. Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol. 1993;265:H350–65.

    CAS  PubMed  Google Scholar 

  81. Laughlin MH, Ripperger J. Vascular transport capacity of hindlimb muscles of exercise-trained rats. J Appl Physiol. 1987;62:438–43.

    CAS  PubMed  Google Scholar 

  82. Brown MD, Cotter MA, Hudlicka O, Vrbova G. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflugers Arch. 1976;361:241–50.

    Article  CAS  PubMed  Google Scholar 

  83. Hudlicka O, Brown M, Cotter M, Smith M, Vrbova G. The effect of long-term stimulation of fast muscles on their blood flow, metabolism and ability to withstand fatigue. Pflugers Arch. 1977;369:141–9.

    Article  CAS  PubMed  Google Scholar 

  84. Ostergard T, Nyholm B, Hansen TK, et al. Endothelial function and biochemical vascular markers in first-degree relatives of type 2 diabetic patients: the effect of exercise training. Metabolism. 2006;55:1508–15.

    Article  CAS  PubMed  Google Scholar 

  85. Maiorana A, O’Driscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003;33:1013–35.

    Article  PubMed  Google Scholar 

  86. Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561:1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moriguchi J, Itoh H, Harada S, et al. Low frequency regular exercise improves flow-mediated dilatation of subjects with mild hypertension. Hypertens Res. 2005;28:315–21.

    Article  PubMed  Google Scholar 

  88. Westhoff TH, Franke N, Schmidt S, et al. Too old to benefit from sports? The cardiovascular effects of exercise training in elderly subjects treated for isolated systolic hypertension. Kidney Blood Press Res. 2007;30:240–7.

    Article  PubMed  Google Scholar 

  89. Kingwell BA, Sherrard B, Jennings GL, Dart AM. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997;272:H1070–7.

    CAS  PubMed  Google Scholar 

  90. Sugawara J, Komine H, Hayashi K, et al. Systemic alpha-adrenergic and nitric oxide inhibition on basal limb blood flow: effects of endurance training in middle-aged and older adults. Am J Physiol. 2007;293:H1466–72.

    CAS  Google Scholar 

  91. DeSouza CA, Shapiro LF, Clevenger CM, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102:1351–7.

    Article  CAS  PubMed  Google Scholar 

  92. Higashi Y, Sasaki S, Kurisu S, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100:1194–202.

    Article  CAS  PubMed  Google Scholar 

  93. Beck EB, Erbs S, Mobius-Winkler S, et al. Exercise training restores the endothelial response to vascular growth factors in patients with stable coronary artery disease. Eur J Prev Cardiol. 2012;19:412–8.

    Article  PubMed  Google Scholar 

  94. Hambrecht R, Adams V, Erbs S, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.

    Article  CAS  PubMed  Google Scholar 

  96. Hambrecht R, Hilbrich L, Erbs S, et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol. 2000;35:706–13.

    Article  CAS  PubMed  Google Scholar 

  97. Gielen S, Erbs S, Linke A, Mobius-Winkler S, Schuler G, Hambrecht R. Home-based versus hospital-based exercise programs in patients with coronary artery disease: effects on coronary vasomotion. Am Heart J. 2003;145:E3.

    Article  PubMed  Google Scholar 

  98. Thijssen DH, Ellenkamp R, Kooijman M, et al. A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol. 2007;27:325–31.

    Article  CAS  PubMed  Google Scholar 

  99. Verhaar MC, Strachan FE, Newby DE, et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation. 1998;97:752–6.

    Article  CAS  PubMed  Google Scholar 

  100. Groothuis JT, Thijssen DH, Rongen GA, et al. Angiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals. J Hypertens. 2010;28:2094–101.

    Article  CAS  PubMed  Google Scholar 

  101. Thijssen DH, Van Dijk A, Rongen GA, Smits P, Hopman MT. A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in aging. J Appl Physiol. 2007;27(2):325–31.

    CAS  Google Scholar 

  102. Van Guilder GP, Westby CM, Greiner JJ, Stauffer BL, DeSouza CA. Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension. 2007;50:403–9.

    Article  PubMed  CAS  Google Scholar 

  103. Adams V, Linke A, Krankel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111:555–62.

    Article  CAS  PubMed  Google Scholar 

  104. Buchheit M, Simon C, Charloux A, Doutreleau S, Piquard F, Brandenberger G. Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med Sci Sports Exerc. 2005;37:1530–4.

    Article  PubMed  Google Scholar 

  105. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol. 2003;158:135–43.

    Article  PubMed  Google Scholar 

  106. Wichterle D, Simek J, La Rovere MT, Schwartz PJ, Camm AJ, Malik M. Prevalent low-frequency oscillation of heart rate: novel predictor of mortality after myocardial infarction. Circulation. 2004;110:1183–90.

    Article  PubMed  Google Scholar 

  107. Soares-Miranda L, Sattelmair J, Chaves P, et al. Physical activity and heart rate variability in older adults: the cardiovascular health study. Circulation. 2014;129:2100–10.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Galbo H. Hormonal and metabolic adaptation to exercise. New York: Thieme-Stratton; 1983.

    Google Scholar 

  109. Monahan KD, Dinenno FA, Tanaka H, Clevenger CM, DeSouza CA, Seals DR. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol. 2000;529(Pt 1):263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587:5551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ray CA, Hume KM. Sympathetic neural adaptations to exercise training in humans: insights from microneurography. Med Sci Sports Exerc. 1998;30:387–91.

    Article  CAS  PubMed  Google Scholar 

  112. Roveda F, Middlekauff HR, Rondon MU, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42:854–60.

    Article  PubMed  Google Scholar 

  113. Mueller PJ. Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: influence on sympathetic nervous system regulation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rowell LB. Human cardiovascular control. New York: Oxford University Press; 1993.

    Google Scholar 

  115. Alvarez GE, Halliwill JR, Ballard TP, Beske SD, Davy KP. Sympathetic neural regulation in endurance-trained humans: fitness vs. fatness. J Appl Physiol (1985). 2005;98:498–502.

    Article  Google Scholar 

  116. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87:1076–82.

    Article  CAS  PubMed  Google Scholar 

  117. Laterza MC, de Matos LD, Trombetta IC, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306.

    Article  CAS  PubMed  Google Scholar 

  118. Sun D, Huang A, Koller A, Kaley G. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appl Physiol. 1994;76:2241–7.

    CAS  PubMed  Google Scholar 

  119. Koller A, Huang A, Sun D, Kaley G. Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res. 1995;76:544–50.

    Article  CAS  PubMed  Google Scholar 

  120. Delp MD, Laughlin MH. Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Med Sci Sports Exerc. 1997;29:1454–61.

    Article  CAS  PubMed  Google Scholar 

  121. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J Appl Physiol. 1993;75:1354–63.

    CAS  PubMed  Google Scholar 

  122. McAllister RM, Laughlin MH. Short-term exercise training alters responses of porcine femoral and brachial arteries. J Appl Physiol. 1997;82:1438–44.

    Article  CAS  PubMed  Google Scholar 

  123. Laughlin MH. Endothelium-mediated control of coronary vascular tone after chronic exercise training. Med Sci Sports Exerc. 1995;27:1135–44.

    Article  CAS  PubMed  Google Scholar 

  124. McAllister RM, Kimani JK, Webster JL, Parker JL, Laughlin MH. Effects of exercise training on responses of peripheral and visceral arteries in swine. J Appl Physiol. 1996;80:216–25.

    Article  CAS  PubMed  Google Scholar 

  125. Kingwell BA, Arnold PJ, Jennings GL, Dart AM. Spontaneous running increases aortic compliance in Wistar-Kyoto rats. Cardiovasc Res. 1997;35:132–7.

    Article  CAS  PubMed  Google Scholar 

  126. Johnson LR, Rush JW, Turk JR, Price EM, Laughlin MH. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. J Appl Physiol. 2001;90:1102–10.

    Article  CAS  PubMed  Google Scholar 

  127. Johnson LR, Laughlin MH. Chronic exercise training does not alter pulmonary vasorelaxation in normal pigs. J Appl Physiol. 2000;88:2008–14.

    CAS  PubMed  Google Scholar 

  128. Kramsch DM, Aspen AJ, Abramowitz BM, Kreimendahl T, Hood Jr WB. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N Engl J Med. 1981;305:1483–9.

    Article  CAS  PubMed  Google Scholar 

  129. Lash JM, Bohlen HG. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J Appl Physiol. 1992;72:2052–62.

    CAS  PubMed  Google Scholar 

  130. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol. 1968;24:485–90.

    CAS  PubMed  Google Scholar 

  131. Wyatt HL, Mitchell J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol. 1978;45:619–25.

    CAS  PubMed  Google Scholar 

  132. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431–8.

    Article  CAS  PubMed  Google Scholar 

  133. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol. 1980;239:H14–21.

    CAS  PubMed  Google Scholar 

  134. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986;231:405–7.

    Article  CAS  PubMed  Google Scholar 

  135. Prior BM, Lloyd PG, Yang HT, Terjung RL. Exercise-induced vascular remodeling. Exerc Sport Sci Rev. 2003;31:26–33.

    Article  PubMed  Google Scholar 

  136. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg. 1987;5:413–20.

    Article  CAS  PubMed  Google Scholar 

  138. Tinken TM, Thijssen DH, Black MA, Cable NT, Green DJ. Conduit artery functional adaptation is reversible and precedes structural changes to exercise training in humans. 2008. In Press.

    Google Scholar 

  139. Pullin CH, Bellamy MF, Bailey D, et al. Time course of changes in endothelial function following exercise in habitually sedentary men. J Exerc Physiol. 2004;7:12–22.

    Google Scholar 

  140. Haram PM, Adams V, Kemi OJ, et al. Time-course of endothelial adaptation following acute and regular exercise. Eur J Cardiovasc Prev Rehabil. 2006;13:585–91.

    Article  PubMed  Google Scholar 

  141. Birk GK, Dawson EA, Atkinson C, et al. Brachial artery adaptation to lower limb exercise training: role of shear stress. J Appl Physiol. 2012;112:1653–8.

    Article  PubMed  Google Scholar 

  142. Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98:2709–15.

    Article  CAS  PubMed  Google Scholar 

  143. Clarkson P, Montgomery HE, Mullen MJ, et al. Exercise training enhances endothelial function in young men. J Am Coll Cardiol. 1999;33:1379–85.

    Article  CAS  PubMed  Google Scholar 

  144. Linke A, Schoene N, Gielen S, et al. Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J Am Coll Cardiol. 2001;37:392–7.

    Article  CAS  PubMed  Google Scholar 

  145. Thijssen DH, Dawson EA, van den Munckhof IC, Birk GK, Timothy Cable N, Green DJ. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans. Atherosclerosis. 2013;229:282–6.

    Article  CAS  PubMed  Google Scholar 

  146. Armstrong RB, Delp MD, Goljan EF, Laughlin MH. Distribution of blood flow in muscles of miniature swine during exercise. J Appl Physiol. 1987;62:1285–98.

    CAS  PubMed  Google Scholar 

  147. Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol. 2008;104:588–600.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res. 2009;47:168–80.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Tuttle JL, Nachreiner RD, Bhuller AS, et al. Shear level influences artery remodelling, wall dimension, cell density and eNOS expression. Am J Physiol. 2001;281:H1380–9.

    CAS  Google Scholar 

  150. Harrison DG, Sayegh H, Ohara Y, Inoue N, Venema RC. Regulation of expression of the endothelial cell nitric oxide synthase. Clin Exp Pharmacol Physiol. 1996;23:251–5.

    Article  CAS  PubMed  Google Scholar 

  151. Miller VM, Burnett JCJ. Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol. 1992;263:H103–8.

    CAS  PubMed  Google Scholar 

  152. Nadaud S, Philippe M, Arnal JF, Michel JB, Soubrier F. Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow. Circ Res. 1996;79:857–63.

    Article  CAS  PubMed  Google Scholar 

  153. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74:349–53.

    Article  CAS  PubMed  Google Scholar 

  154. Uematsu M, Ohara Y, Navas JP, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269:C1371–8.

    CAS  PubMed  Google Scholar 

  155. Noris M, Morigi M, Donadelli R, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res. 1995;76:536–43.

    Article  CAS  PubMed  Google Scholar 

  156. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol. 1995;269:H550–5.

    CAS  PubMed  Google Scholar 

  157. Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992;90:2092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Woodman CR, Muller JM, Rush JW, Laughlin MH, Price EM. Flow regulation of ecNOS and Cu/Zn SOD mRNA expression in porcine coronary arterioles. Am J Physiol. 1999;276:H1058–63.

    CAS  PubMed  Google Scholar 

  159. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18:686–92.

    Article  CAS  PubMed  Google Scholar 

  160. Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol. 2007;293:H645–53.

    CAS  Google Scholar 

  161. Thijssen DH, Dawson EA, Tinken TM, Cable NT, Green DJ. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension. 2009;53:986–92.

    Article  CAS  PubMed  Google Scholar 

  162. Schreuder THA, Green DJ, Hopman MTE, Thijssen DHJ. Acute impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in humans. Physiol Rep. 2014;2:e00193.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Tinken TM, Thijssen DH, Hopkins N, et al. Impact of shear rate modulation on vascular function in humans. Hypertension. 2009;54:278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55:312–8.

    Article  CAS  PubMed  Google Scholar 

  165. Thijssen DH, Dawson EA, Black MA, Hopman MT, Cable NT, Green DJ. Brachial artery blood flow responses to different modalities of lower limb exercise. Med Sci Sports Exerc. 2009;41:1072–9.

    Article  PubMed  Google Scholar 

  166. Green D, Cheetham C, Reed C, Dembo L, O’Driscoll G. Assessment of brachial artery blood flow across the cardiac cycle: retrograde flows during cycle ergometry. J Appl Physiol. 2002;93:361–8.

    Article  PubMed  Google Scholar 

  167. Simmons GH, Padilla J, Young CN, et al. Increased brachial artery retrograde shear rate at exercise onset is abolished during prolonged cycling: role of thermoregulatory vasodilation. J Appl Physiol. 2011;110:389–97.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Green DJ, Carter HH, Fitzsimons MG, Cable NT, Thijssen DH, Naylor LH. Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans. J Physiol. 2010;588:1571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Naylor LH, Carter H, FitzSimons MG, Cable NT, Thijssen DH, Green DJ. Repeated increases in blood flow, independent of exercise, enhance conduit artery vasodilator function in humans. Am J Physiol. 2011;300:H664–9.

    CAS  Google Scholar 

  170. Carter HH, Spence AL, Atkinson CL, Pugh CJ, Naylor LH, Green DJ. Repeated core temperature elevation induces conduit artery adaptation in humans. Eur J Appl Physiol. 2014;114:859–65.

    Article  PubMed  Google Scholar 

  171. Vita JA, Holbrook M, Palmisano J, et al. Flow-induced arterial remodeling relates to endothelial function in the human forearm. Circulation. 2008;117:3126–33.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Guyton JR, Hartley CJ. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am J Physiol. 1985;248:H540–6.

    CAS  PubMed  Google Scholar 

  173. Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol. 1989;256:H931–9.

    CAS  PubMed  Google Scholar 

  174. Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol. 2001;281:H2528–38.

    CAS  Google Scholar 

  175. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16:1256–62.

    Article  CAS  PubMed  Google Scholar 

  176. Rodbard S, Sarzana D. Tolerance to unilateral or bilateral ischemic hand exercise. J Appl Physiol. 1975;38:817–8.

    CAS  PubMed  Google Scholar 

  177. Zamir M. Shear forces and blood vessel radii in the cardiovascular system. J Gen Physiol. 1977;69:449–61.

    Article  CAS  PubMed  Google Scholar 

  178. Awolesi MA, Sessa WC, Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest. 1995;96:1449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Awolesi MA, Widmann MD, Sessa WC, Sumpio BE. Cyclic strain increases endothelial nitric oxide synthase activity. Surgery. 1994;116:439–44. discussion 444–435.

    CAS  PubMed  Google Scholar 

  180. Ziegler T, Silacci P, Harrison VJ, Hayoz D. Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension. 1998;32:351–5.

    Article  CAS  PubMed  Google Scholar 

  181. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res. 1997;81:1–7.

    Article  CAS  PubMed  Google Scholar 

  182. Yun JK, Anderson JM, Ziats NP. Cyclic-strain-induced endothelial cell expression of adhesion molecules and their roles in monocyte-endothelial interaction. J Biomed Mater Res. 1999;44:87–97.

    Article  CAS  PubMed  Google Scholar 

  183. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension. 1996;28:386–91.

    Article  CAS  PubMed  Google Scholar 

  184. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension. 1998;31:125–30.

    Article  CAS  PubMed  Google Scholar 

  185. Thacher T, Gambillara V, da Silva RF, Silacci P, Stergiopulos N. Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model. Cardiovasc Pathol. 2009;19:e91–8.

    Article  PubMed  CAS  Google Scholar 

  186. Hishikawa K, Oemar BS, Yang Z, Luscher TF. Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle. Circ Res. 1997;81:797–803.

    Article  CAS  PubMed  Google Scholar 

  187. Guest TM, Vlastos G, Alameddine FM, Taylor WR. Mechanoregulation of monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Antioxid Redox Signal. 2006;8:1461–71.

    Article  CAS  PubMed  Google Scholar 

  188. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, Guimaraes GV. Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res. 2010;33:836–43.

    Article  CAS  PubMed  Google Scholar 

  189. Fernandes T, Magalhaes FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59:513–20.

    Article  CAS  PubMed  Google Scholar 

  190. Fernandes T, Nakamuta JS, Magalhaes FC, et al. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis. J Hypertens. 2012;30:2133–43.

    Article  CAS  PubMed  Google Scholar 

  191. Tanzilli G, Barilla F, Pannitteri G, et al. Exercise training counteracts the abnormal release of plasma endothelin-1 in normal subjects at risk for hypertension. Ital Heart J. 2003;4:107–12.

    PubMed  Google Scholar 

  192. Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108:530–5.

    Article  PubMed  Google Scholar 

  193. Bergholm R, Makimattila S, Valkonen M, et al. Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilatation in vivo. Atherosclerosis. 1999;145:341–9.

    Article  CAS  PubMed  Google Scholar 

  194. Green DJ, Eijsvogels T, Bouts YM, et al. Exercise training and artery function in humans: non-response and its relationship to cardiovascular risk factors. J Appl Physiol (1985). 2014;117(4):345–52.

    Article  CAS  Google Scholar 

  195. Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.

    Article  PubMed  Google Scholar 

  196. Tjonna AE, Lee SJ, Rognmo O, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–54.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Munk PS, Staal EM, Butt N, Isaksen K, Larsen AI. High-intensity interval training may reduce in-stent restenosis following percutaneous coronary intervention with stent implantation A randomized controlled trial evaluating the relationship to endothelial function and inflammation. Am Heart J. 2009;158:734–41.

    Article  PubMed  Google Scholar 

  198. Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013;45:1436–42.

    Article  PubMed  Google Scholar 

  199. Molmen-Hansen HE, Stolen T, Tjonna AE, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012;19:151–60.

    Article  PubMed  Google Scholar 

  200. Brook RD, Appel LJ, Rubenfire M, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension. 2013;61:1360–83.

    Article  CAS  PubMed  Google Scholar 

  201. Thijssen DH, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MT, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2010;108:845–75.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick H. J. Thijssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thijssen, D.H.J., Maiorana, A., Green, D.J. (2015). Aerobic Exercise Training: Effects on Vascular Function and Structure. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_5

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics