Skip to main content

Synthetic High-Density Lipoprotein-Like Nanoparticles as Cancer Therapy

  • Chapter
  • First Online:
Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

High-density lipoproteins (HDL) are diverse natural nanoparticles that carry cholesterol and are best known for the role that they play in cardiovascular disease. However, due to their unique targeting capabilities, diverse molecular cargo, and natural functions beyond cholesterol transport, it is becoming increasingly appreciated that HDLs are critical to cancer development and progression. Accordingly, this chapter highlights ongoing research focused on the connections between HDL and cancer in order to design new drugs and targeted drug delivery vehicles. Research is focused on synthesizing biomimetic HDL-like nanoparticles (NP) that can be loaded with diverse therapeutic cargo (e.g., chemotherapies, nucleic acids, proteins) and specifically targeted to cancer cells. Beyond drug delivery, new data is emerging that HDL-like NPs may be therapeutically active in certain tumor types, for example, B cell lymphoma. Overall, HDL-like NPs are becoming increasingly appreciated as targeted, biocompatible, and efficient therapies for cancer, and may soon become indispensable agents in the cancer therapeutic armamentarium.

Kaylin M. McMahon, Linda Foit and Nicholas L. Angeloni contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camont L, Chapman MJ, Kontush A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17(10):594–603. doi:10.1016/J.Molmed.05.013

    Article  CAS  PubMed  Google Scholar 

  2. Xu S, Laccotripe M, Huang X et al (1997) Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 38(7):1289–1298

    CAS  PubMed  Google Scholar 

  3. Warnick GR, McNamara JR, Boggess CN et al (2006) Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med 26(4):803–846. doi:Doi 10.1016/J.Cll.2006.07.005

  4. Tabet F, Rye KA (2009) High-density lipoproteins, inflammation and oxidative stress. Clin Sci 116(1–2):87–98. doi:10.1042/Cs20080106

    Article  CAS  PubMed  Google Scholar 

  5. Damiano MG, Mutharasan RK, Tripathy S et al (2013) Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliv Rev 65(5):649–662. doi:10.1016/j.addr.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  6. Rosenson RS, Brewer HB, Chapman MJ et al (2011) HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 57(3):392–410. doi:10.1373/Clinchem.2010.155333

    Article  CAS  PubMed  Google Scholar 

  7. Asztalos BF, Tani M, Schaefer EJ (2011) Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 22(3):176–185. doi:10.1097/MOL.0b013e3283468061

    Article  CAS  PubMed  Google Scholar 

  8. Robert O, Bonow EA (eds) (2012) Braunwald’s heart disease—a textbook of cardiovascular medicine, 9th edn. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  9. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9(2):125–138. doi:10.1038/nrm2336

    Article  CAS  PubMed  Google Scholar 

  10. Calabresi L, Gomaraschi M, Rossoni G et al (2006) Synthetic high density lipoproteins for the treatment of myocardial ischemia/reperfusion injury. Pharmacol Therapeut 111(3):836–854. doi:10.1016/J.Pharmthera.01.003

    Article  CAS  Google Scholar 

  11. Silva RAGD, Huang R, Morris J et al (2008) Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Nat Acad Sci USA 105(34):12176–12181. doi:10.1073/Pnas.0803626105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Segrest JP, Li L, Anantharamaiah GM et al (2000) Structure and function of apolipoprotein A-I and high-density lipoprotein. Curr Opin Lipidol 11(2):105–115. doi:10.1097/00041433-200004000-00002

    Article  CAS  PubMed  Google Scholar 

  13. Cheung MC, Albers JJ (1982) Distribution of high-density lipoprotein particles with different apoprotein composition—Particles with a-I and a-Ii and Particles with a-I but No a-Ii. J Lipid Res 23(5):747–753

    CAS  PubMed  Google Scholar 

  14. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–U182. doi:10.1038/Ncb2210

    Article  Google Scholar 

  15. Liu X, Suo R, Xiong SL et al (2013) HDL drug carriers for targeted therapy. Clin Chim Acta; Int J Cin Chem 415:94–100. doi:10.1016/j.cca.2012.10.008

    Article  CAS  Google Scholar 

  16. Vickers KC, Remaley AT (2013) Functional diversity of HDL cargo. J Lipid Res doi:10.1194/jlr.R035964

  17. Pirillo A, Norata GD, Catapano AL (2013) High-density lipoprotein subfractions—what the clinicians need to know. Cardiology 124(2):116–125. doi:10.1159/000346463

    Article  CAS  PubMed  Google Scholar 

  18. Feig JE, Hewing B, Smith JD et al (2014) High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res 114(1):205–213. doi:10.1161/CIRCRESAHA.114.300760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rader DJ, Alexander ET, Weibel GL et al (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194. doi:10.1194/jlr.R800088-JLR200

    PubMed Central  PubMed  Google Scholar 

  20. Gomaraschi M, Ossoli A, Vitali C et al (2013) HDL and endothelial protection: examining evidence from HDL inherited disorders. Clin Lipidol 8(3):361–370. doi:10.2217/Clp.13.30

    Article  CAS  Google Scholar 

  21. Nicholls SJ, Dusting GJ, Cutri B et al (2005) Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111(12):1543–1550. doi:10.1161/01.Cir.0000159351.95399.50

    Article  CAS  PubMed  Google Scholar 

  22. Cockerill GW, Rye KA, Gamble JR et al (1995) High-density-lipoproteins inhibit cytokine-induced expression of endothelial-cell adhesion molecules. Arterioscler Thromb Vasc 15(11):1987–1994

    Article  CAS  Google Scholar 

  23. Navab M, Imes SS, Hama SY et al (1991) Monocyte transmigration induced by modification of low-density-lipoprotein in cocultures of human aortic-wall cells is due to induction of monocyte chemotactic Protein-1 synthesis and is abolished by high-density-lipoprotein. J Clin Invest 88(6):2039–2046. doi:10.1172/Jci115532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gordon LI, Bass J, Yachnin S (1980) Inhibition of human polymorphonuclear leukocyte chemotaxis by oxygenated sterol compounds. Proc Nat Acad Sci USA 77(7):4313–4316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yachnin S, Streuli RA, Gordon LI et al (1979) Alteration of peripheral blood cell membrane function and morphology by oxygenated sterols; a membrane insertion hypothesis. Curr Top Hematol 2:245–271

    CAS  PubMed  Google Scholar 

  26. Kontush A, Chapman MJ (2010) Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 21(4):312–318. doi:10.1097/Mol.0b013e32833bcdc1

    Article  CAS  PubMed  Google Scholar 

  27. Davidson WS, Silva RAGD, Chantepie S et al (2009) Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters relevance to antioxidative function. Arterioscler Thromb Vasc 29(6):870–U234. doi:10.1161/Atvbaha.109.186031

    Article  Google Scholar 

  28. Subramanian VS, Goyal J, Miwa M et al (1999) Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma. Biochim Biophys Acta 1439(1):95–109

    Article  CAS  PubMed  Google Scholar 

  29. Mineo C, Deguchi H, Griffin JH et al (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98(11):1352–1364. doi:10.1161/01.RES.0000225982.01988.93

    Article  CAS  PubMed  Google Scholar 

  30. Yuhanna IS, Zhu Y, Cox BE et al (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7(7):853–857. doi:10.1038/89986

    Article  CAS  PubMed  Google Scholar 

  31. Furie B, Furie BC (2004) Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10(4):171–178. doi:10.1016/j.molmed.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  32. Farmer JA, Liao J (2011) Evolving concepts of the role of high-density lipoprotein in protection from atherosclerosis. Curr atherosclerosis rep 13(2):107–114. doi:10.1007/s11883-011-0166-3

    Article  CAS  Google Scholar 

  33. Naqvi TZ, Shah PK, Ivey PA et al (1999) Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am J Cardiol 84(9):1011–1017

    Article  CAS  PubMed  Google Scholar 

  34. Calkin AC, Drew BG, Ono A et al (2009) Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120(21):2095–2104. doi:10.1161/CIRCULATIONAHA.109.870709

    Article  CAS  PubMed  Google Scholar 

  35. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290(5497):1721–1726. doi:10.1126/science.290.5497.1721

    CAS  PubMed  Google Scholar 

  36. Clendening JW, Pandyra A, Boutros PC et al (2010) Dysregulation of the mevalonate pathway promotes transformation. Proc Nat Acad Sci USA 107(34):15051–15056. doi:10.1073/pnas.0910258107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ginestier C, Monville F, Wicinski J et al (2012) Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target. Stem Cells 30(7):1327–1337. doi:10.1002/stem.1122

    Article  CAS  PubMed  Google Scholar 

  38. Cruz PM, Mo H, McConathy WJ et al (2013) The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Front pharmacol 4:119. doi:10.3389/fphar.2013.00119

    Article  PubMed Central  PubMed  Google Scholar 

  39. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47. doi:10.1126/science.3513311

    Article  CAS  PubMed  Google Scholar 

  40. Olson RE (1998) Discovery of the lipoproteins, their role in fat transport and their significance as risk factors. J Nutr 128(2):439s–443s

    CAS  PubMed  Google Scholar 

  41. Chapman MJ (1980) Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res 21(7):789–853

    CAS  PubMed  Google Scholar 

  42. Gorin A, Gabitova L, Astsaturov I (2012) Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol 12(6):710–716. doi:10.1016/j.coph.2012.06.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Brown AJ (2007) Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol 34(3):135–141. doi:10.1111/j.1440-1681.2007.04565.x

    Article  CAS  PubMed  Google Scholar 

  44. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699. doi:10.1038/nrm2977

    Article  CAS  PubMed  Google Scholar 

  45. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. doi:10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  46. Niendorf A, Nagele H, Gerding D et al (1995) Increased LDL receptor mRNA expression in colon cancer is correlated with a rise in plasma cholesterol levels after curative surgery. Int J Cancer J Int Du Cancer 61(4):461–464

    Article  CAS  Google Scholar 

  47. Solomon KR, Freeman MR (2011) The complex interplay between cholesterol and prostate malignancy. Urol Clin North Am 38(3):243–259. doi:10.1016/j.ucl.2011.04.001

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rotheneder M, Kostner GM (1989) Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer J Int Du Cancer 43(5):875–879

    Article  CAS  Google Scholar 

  49. Uda S, Accossu S, Spolitu S et al (2012) A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumour Biol: J Int Soc Oncodevelopmental Biol Med 33(2):443–453. doi:10.1007/s13277-011-0270-6

    Article  CAS  Google Scholar 

  50. Danilo C, Frank PG (2012) Cholesterol and breast cancer development. Curr Opin Pharmacol 12(6):677–682. doi:10.1016/j.coph.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  51. Navab M, Reddy ST, Van Lenten BJ et al (2009) The role of dysfunctional HDL in atherosclerosis. J Lipid Res 50(Suppl):S145–S149. doi:10.1194/jlr.R800036-JLR200

    PubMed Central  PubMed  Google Scholar 

  52. Eren E, Yilmaz N, Aydin O (2012) High density lipoprotein and it’s dysfunction. Open Biochem J 6:78–93. doi:10.2174/1874091X01206010078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Leon CG, Locke JA, Adomat HH et al (2010) Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70(4):390–400. doi:10.1002/pros.21072

    CAS  PubMed  Google Scholar 

  54. Shahzad MMK, Mangala LS, Han HD et al (2011) Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 13(4):309–U142. doi:10.1593/Neo.101372

    Article  Google Scholar 

  55. Llaverias G, Danilo C, Mercier I et al (2011) Role of cholesterol in the development and progression of breast cancer. Am J Pathol 178(1):402–412. doi:10.1016/j.ajpath.2010.11.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Muntoni S, Atzori L, Mereu R et al (2009) Serum lipoproteins and cancer. Nutr Metab Cardiovasc Dis: NMCD 19(3):218–225. doi:10.1016/j.numecd.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  57. Danilo C, Gutierrez-Pajares JL, Mainieri MA et al (2013) Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Res: BCR 15(5):R87. doi:10.1186/bcr3483

    Article  PubMed Central  PubMed  Google Scholar 

  58. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. doi:10.1021/Nn900002m

    Article  CAS  PubMed  Google Scholar 

  59. Sabnis N, Lacko AG (2012) Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv 3(5):599–608

    Article  CAS  PubMed  Google Scholar 

  60. Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdisc Rev Nanomed Nanobiotechnol 5(3):250–265. doi:10.1002/wnan.1217

    Article  CAS  Google Scholar 

  61. Ng KK, Lovell JF, Zheng G (2011) Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res 44(10):1105–1113. doi:10.1021/Ar200017e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sabnis N, Nair M, Israel M et al (2012) Enhanced solubility and functionality of valrubicin (AD-32) against cancer cells upon encapsulation into biocompatible nanoparticles. Int J Nanomed 7:975–983. doi:10.2147/Ijn.S28029

    CAS  Google Scholar 

  63. Lacko AG, Nair M, Paranjape S et al (2002) High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res 22(4):2045–2049

    CAS  PubMed  Google Scholar 

  64. Liadaki KN, Liu T, Xu S et al (2000) Binding of high density lipoprotein (HDL) and discoidal reconstituted HDL to the HDL receptor scavenger receptor class B type I. Effect of lipid association and APOA-I mutations on receptor binding. J Biol Chem 275(28):21262–21271. doi:10.1074/jbc.M002310200

    Article  CAS  PubMed  Google Scholar 

  65. Rader DJ (2006) Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 116(12):3090–3100. doi:10.1172/Jci30163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ghosh M, Singh AT, Xu W et al (2011) Curcumin nanodisks: formulation and characterization. Nanomedicine 7(2):162–167. doi:10.1016/j.nano.2010.08.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Singh AT, Evens AM, Anderson RJ et al (2010) All trans retinoic acid nanodisks enhance retinoic acid receptor mediated apoptosis and cell cycle arrest in mantle cell lymphoma. Br J Haematol 150(2):158–169. doi:10.1111/j.1365-2141.2010.08209.x

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Singh AT, Ghosh M, Forte TM et al (2011) Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leuk Lymphoma 52(8):1537–1543. doi:10.3109/10428194.2011.584253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Jia JT, Xiao Y, Liu JP et al (2012) Preparation, characterizations, and in vitro metabolic processes of paclitaxel-loaded discoidal recombinant high-density lipoproteins. J Pharm Sci-US 101(8):2900–2908. doi:10.1002/Jps.23210

    Article  CAS  Google Scholar 

  70. Wang J, Jia JT, Liu JP et al (2013) Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Drug Deliv 20(8):356–363. doi:10.3109/10717544.2013.834418

    Article  CAS  PubMed  Google Scholar 

  71. Zhang M, Jia J, Liu J et al (2013) A novel modified paclitaxel-loaded discoidal recombinant high-density lipoproteins: preparation, characterizations and in vivo evaluation. Asian J Pharm Sci 8 (1):11–18. doi:http://dx.doi.org/10.1016/j.ajps.2013.07.002

  72. Sabnis N, Pratap S, Akopova I et al (2013) Pre-clinical evaluation of rHDL encapsulated retinoids for the treatment of neuroblastoma. Front Pediatr 1:6. doi:10.3389/fped.2013.00006

    Article  PubMed Central  PubMed  Google Scholar 

  73. Wang BL, Yuan Y, Han L et al (2014) Recombinant lipoproteins reinforce cytotoxicity of doxorubicin to hepatocellular carcinoma. J Drug Target 22(1):76–85. doi:10.3109/1061186x.2013.839687

    Article  PubMed  Google Scholar 

  74. Yuan Y, Wang WN, Wang BL et al (2013) Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier. J Drug Target 21(4):367–374. doi:10.3109/1061186x.2012.757769

    Article  CAS  PubMed  Google Scholar 

  75. Lin Q, Chen J, Ng KK et al (2013) Imaging the cytosolic drug delivery mechanism of HDL-like nanoparticles. Pharm Res. doi:10.1007/s11095-013-1046-z

    PubMed Central  Google Scholar 

  76. Reddy ST, Navab M, Anantharamaiah GM et al (2014) Searching for a successful HDL-based treatment strategy. Biochim Biophys Acta 1841 1:162–167

    Article  Google Scholar 

  77. Knecht TP, Pittman RC (1989) A plasma-membrane pool of cholesteryl esters that may mediate the selective uptake of cholesteryl esters from high-density lipoproteins. Biochim Biophys Acta 1002(3):365–375. doi:10.1016/0005-2760(89)90351-2

    Article  CAS  PubMed  Google Scholar 

  78. Pittman RC, Knecht TP, Rosenbaum MS et al (1987) A nonendocytotic mechanism for the selective uptake of high-density lipoprotein-associated cholesterol esters. J Biol Chem 262(6):2443–2450

    CAS  PubMed  Google Scholar 

  79. Mathew S, Murakami T, Nakatsuji H et al (2013) Exclusive photothermal heat generation by a gadolinium bis(naphthalocyanine) complex and inclusion into modified high-density lipoprotein nanocarriers for therapeutic applications. ACS Nano 7(10):8908–8916. doi:10.1021/Nn403384k

    Article  CAS  PubMed  Google Scholar 

  80. Ng KK, Lovell JF, Vedadi A et al (2013) Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 7(4):3484–3490. doi:10.1021/Nn400418y

    Article  CAS  PubMed  Google Scholar 

  81. Corbin IR (2013) Ligand-coupled lipoprotein for ovarian cancer-specific drug delivery. Methods Mol Biol 1049:467–480. doi:10.1007/978-1-62703-547-7_35

    Article  CAS  PubMed  Google Scholar 

  82. Kalli KR, Oberg AL, Keeney GL et al (2008) Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 108(3):619–626. doi:10.1016/j.ygyno.2007.11.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Corbin IR, Ng KK, Ding L et al (2013) Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine 8(6):875–890. doi:10.2217/nnm.12.137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Bijsterbosch MK, Rump ET, De Vrueh RLA et al (2000) Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res 28(14):2717–2725. doi:10.1093/Nar/28.14.2717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178. doi:10.1038/Nature03121

    Article  CAS  PubMed  Google Scholar 

  86. Lorenz C, Hadwiger P, John M et al (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 14(19):4975–4977. doi:10.1016/J.Bmcl.07.018

    Article  CAS  PubMed  Google Scholar 

  87. Wolfrum C, Shi S, Jayaprakash KN et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25(10):1149–1157. doi:10.1038/nbt1339

    Article  CAS  PubMed  Google Scholar 

  88. Thaxton CS, Daniel WL, Giljohann DA et al (2009) Templated spherical high density lipoprotein nanoparticles. J Am Chem Soc 131(4):1384–1385. doi:10.1021/ja808856z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Luthi AJ, Zhang H, Kim D et al (2012) Tailoring of biomimetic high-density lipoprotein nanostructures changes cholesterol binding and efflux. ACS Nano 6(1):276–285. doi:10.1021/nn2035457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Yang S, Damiano MG, Zhang H et al (2013) Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Nat Acad Sci USA 110(7):2511–2516. doi:10.1073/pnas.1213657110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. McMahon KM, Mutharasan RK, Tripathy S et al (2011) Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett 11(3):1208–1214. doi:10.1021/nl1041947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Tripathy S, Vinokour E, McMahon KM et al (2014) High-density lipoprotein nanoparticles deliver RNAi to endothelial cells to inhibit angiogenesis. Part Part Syst Charact. doi:10.1002/ppsc.201400036

  93. Yang M, Jin HL, Chen JA et al (2011) Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles. Small 7(5):568–573. doi:10.1002/Smll.201001589

    Article  CAS  PubMed  Google Scholar 

  94. Shahzad MM, Mangala LS, Han HD et al (2011) Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 13(4):309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Ding Y, Wang W, Feng MQ et al (2012) A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 33(34):8893–8905. doi:10.1016/J.Biomaterials.08.057

    Article  CAS  PubMed  Google Scholar 

  96. Dong Y, Love KT, Dorkin JR et al (2014) Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Nat Acad Sci USA 111(11):3955–3960. doi:10.1073/pnas.1322937111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Nakayama T, Butler JS, Sehgal A et al (2012) Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mole Ther: J Am Soc Gene Ther 20(8):1582–1589. doi:10.1038/mt.2012.33

    Article  CAS  Google Scholar 

  98. Fischer NO, Weilhammer DR, Dunkle A et al (2014) Evaluation of nanolipoprotein particles (NLPs) as an in vivo delivery platform. Plos ONE 9(3). doi:ARTN e93342 DOI 10.1371/journal.pone.0093342

  99. Zheng Y, Liu YY, Jin HL et al (2013) Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL-mimetic nanoparticles. Theranostics 3(7):477–486. doi:10.7150/Thno.6617

    Article  PubMed Central  PubMed  Google Scholar 

  100. Zhang ZH, Chen J, Ding LL et al (2010) HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small 6(3):430–437. doi:10.1002/Smll.200901515

    Article  CAS  PubMed  Google Scholar 

  101. Su F, Grijalva V, Navab K et al (2012) HDL Mimetics inhibit tumor development in both induced and spontaneous mouse models of colon cancer. Mol Cancer Ther 11(6):1311–1319. doi:10.1158/1535-7163.Mct-11-0905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Rui MJ, Tang HL, Li Y et al (2013) Recombinant high density lipoprotein nanoparticles for target-specific delivery of siRNA. Pharm Res-Dordr 30(5):1203–1214. doi:10.1007/s11095-012-0957-4

    Article  CAS  Google Scholar 

  103. Kim Y, Fay F, Cormode DP et al (2013) Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano 7(11):9975–9983. doi:10.1021/nn4039063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Lin QY, Chen J, Jin HL et al (2012) Efficient systemic delivery of siRNA by using high-density lipoprotein-mimicking peptide lipid nanoparticles. Nanomedicine 7(12):1813–1825. doi:10.2217/Nnm.12.73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shad Thaxton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMahon, K.M., Foit, L., Angeloni, N.L., Giles, F.J., Gordon, L.I., Thaxton, C.S. (2015). Synthetic High-Density Lipoprotein-Like Nanoparticles as Cancer Therapy. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics