Skip to main content

Physiopathology and Toxic Heart Effects of Chemotherapy Drugs

  • Chapter
Cardiac Management of Oncology Patients

Abstract

Chemotherapy toxicity relies on the mechanism of action of the drugs, the doses, the way of administration, and underlying predisposing factors like cardiac conditions, genetic pattern, and age and can manifest itself immediately or many years after. Concomitant treatments and radiotherapy can interfere with toxicity. Irreversible cytotoxicity (type I agents) or interaction with functional aspects of cardiac cells not primarily cytotoxic (type II agents) may lead to heart failure. Furthermore arterial hypertension, venous and arterial thromboembolism, myocardial ischemia and infarction, and arrhythmias may develop with several chemotherapy agents.

The cellular toxicity of chemotherapy agents is related to ROS generation, mitochondrial dysfunction, SERCA dysfunction, and sarcomere degradation for anthracyclines; to inhibition of the synthesis of RNA and DNA for fluoropyrimidines; to cross-linkage of DNA strands preventing the uncoiling and leading to DNA breaking and apoptosis for alkylating agents; to prevention of formation and disassembly of the microtubules of the mitotic spindle essential for a correct mitosis for anti-microtubule agents; to vascular rarefaction and damage of NO production of VEGF inhibitors; and to inhibition of HER2 pathway with protective, growth promoter, and antiapoptotic role.

Incidence of acute toxicity may be very rare or quite frequent for different drugs. Also chronic toxicity incidence is variable and may develop over long time period.

Clinical signs and symptoms, electrocardiographic modifications, chest X-ray, troponin and natriuretic peptide elevations, and mainly echocardiographic signs (LVEF and strain methods) may identify chemotherapy toxicity.

Several strategies have been proposed for the prevention and the treatment of the different chemotherapy drug toxicities, based on the accurate patient’s selection, monitoring, and ACE inhibitors and beta-blockers when left ventricular dysfunction develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Mann DL. Mechanisms and models in heart failure: the biochemical model and beyond. Circulation. 2005;111:2837.

    Article  PubMed  Google Scholar 

  2. Ewer MS. Reversibility of Trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820.

    Article  CAS  PubMed  Google Scholar 

  3. Sawyer DB. Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation. 2002;105(13):1551.

    Article  CAS  PubMed  Google Scholar 

  4. Telli ML. Trastuzumab-induced cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25:3525.

    Article  CAS  PubMed  Google Scholar 

  5. Ederhy S. Cardiac side effects of molecular targeted therapies: towards a better dialogue between oncologists and cardiologists. Clin Rev Oncol Hematol. 2011. doi:10.1016/j.eritrevonc.2011.01.009

  6. Tan C. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1968;20(3):333.

    Article  Google Scholar 

  7. Swain SM. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869.

    Article  CAS  PubMed  Google Scholar 

  8. Nousiainen T. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251:228.

    Article  CAS  PubMed  Google Scholar 

  9. Lipshultz SE. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2629.

    Article  CAS  PubMed  Google Scholar 

  10. Wojonowski L. NAD(P)H oxidase and multidrug resistance protein genetic polymorphism are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754.

    Article  Google Scholar 

  11. Smith LA. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2010;10:337.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ewer MS. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2:112.

    CAS  PubMed  Google Scholar 

  13. Lefrak EA. A clinicopathologic analysis of Adriamycin cardiotoxicity. Cancer. 1973;32:302.

    Article  CAS  PubMed  Google Scholar 

  14. Cardinale D. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13:710.

    Article  CAS  PubMed  Google Scholar 

  15. Bristow MR. Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep. 1978;62:873.

    CAS  PubMed  Google Scholar 

  16. Lipshults SE. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145.

    Article  Google Scholar 

  17. Swain SM. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;35:1318.

    Google Scholar 

  18. Swain SM. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. 1997;15:1333.

    CAS  PubMed  Google Scholar 

  19. Ewer MS. Cardiac safety of liposomal anthracyclines. Semin Oncol. 2004;31:161.

    Article  CAS  PubMed  Google Scholar 

  20. Takemura G. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49:330.

    Article  CAS  PubMed  Google Scholar 

  21. Fernandez SF. Takotsubo cardiomyopathy following initial chemotherapy presenting with syncope and cardiogenic shock – a case report and literature review. J Clin Exp Cardiol. 2001;2:124.

    Google Scholar 

  22. Singal PK. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol. 1987;19:817.

    Article  CAS  PubMed  Google Scholar 

  23. Grenier MA. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25(4 Suppl 10):72.

    CAS  PubMed  Google Scholar 

  24. Mulrooney DA. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Abu-Khalaf MM. Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A) paclitaxel (T) and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer. Breast Cancer Res Treat. 2007;104(3):341.

    Article  CAS  PubMed  Google Scholar 

  26. Billingham ME. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep. 1978;62:865.

    CAS  PubMed  Google Scholar 

  27. Buja LM. Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer. 1973;32:771.

    Article  CAS  PubMed  Google Scholar 

  28. Von Hoff DD. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;01:710.

    Article  Google Scholar 

  29. O’Brien ME, CAELIX Breast Cancer Study Group. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCL (CAELIXDTM/Doxil®) versus conventional doxorubicin for first line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440.

    Article  PubMed  Google Scholar 

  30. van Dalen EC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;(6):CD003917.

    Google Scholar 

  31. van Dalen EC. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010;(5):CD005006.

    Google Scholar 

  32. van Dalen EC. Different dosage schedules for reducing cardiotoxicity in cancer patients for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2009;(4):CD005008.

    Google Scholar 

  33. Cole MP. The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity. Cardiovasc Res. 2006;69(1):186.

    Article  CAS  PubMed  Google Scholar 

  34. Daosukho C. Induction of manganese superoxide dismutase (MnSOD) mediates cardioprotective effect of tamoxifen (TAM). J Mol Cell Cardiol. 2005;39(5):792.

    Article  CAS  PubMed  Google Scholar 

  35. Volkova M. Activation of the aryl hydrocarbon receptor by doxorubicin mediates cytoprotective effects in the heart. Cardiovasc Res. 2011;90:305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Neilan TG. Disruption of nitric oxide synthase 3 protects against the cardiac injury dysfunction and mortality induced by doxorubicin. Circulation. 2007;116(5):506.

    Article  CAS  PubMed  Google Scholar 

  37. Dowd NP. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest. 2001;108(4):585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kotamraju S. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem. 2000;275(43):33585.

    Article  CAS  PubMed  Google Scholar 

  39. Chua CC. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol. 2006;290(6):H2606.

    Article  CAS  PubMed  Google Scholar 

  40. Wang L. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998;83(5):516.

    Article  CAS  PubMed  Google Scholar 

  41. Childs AC. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis as well as increased mitochondrial efficiency superoxide dismutase activity and Bcl-2 Bax ratio. Cancer Res. 2002;62(16):4592.

    CAS  PubMed  Google Scholar 

  42. Wang GW. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther. 2001;298(2):461.

    CAS  PubMed  Google Scholar 

  43. Palfi A. The role of Akt and mitogen-activated protein kinase systems in the protective effect of poly (ADP-ribose) polymerase inhibition in Langendorff perfused and in isoproterenol-damaged rat hearts. J Pharmacol Exp Ther. 2005;315(1):273.

    Article  CAS  PubMed  Google Scholar 

  44. Toth A. Impact of a novel cardioprotective agent on the ischemia-reperfusion-induced Akt kinase activation. Biochem Pharmacol. 2003;66(11):2263.

    Article  CAS  PubMed  Google Scholar 

  45. Toth A. Akt activation induced by an antioxidant compound during ischemia-reperfusion. Free Radic Biol Med. 2003;35(9):1051.

    Article  CAS  PubMed  Google Scholar 

  46. Nagy N. Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. J Mol Cell Cardiol. 2008;44(2):252.

    Article  CAS  PubMed  Google Scholar 

  47. Pastukh V. Contribution of the PI 3-kinase/Akt survival pathway toward osmotic preconditioning. Mol Cell Biochem. 2005;269(1–2):59.

    Article  CAS  PubMed  Google Scholar 

  48. Russell SD. Independent adjudication of symptomatic heart failure with the use of doxorubicin and cyclophosphamide followed by trastuzumab adjuvant therapy a combined review of cardiac data from the National Surgical Adjuvant breast and Bowel Project B-31 and the North Central Cancer Treatment Group N9831 clinical trials. J Clin Oncol: Off J Am Soc Clin Oncol Clin Trial Res Support Non US Govt. 2010;28(21):3416.

    Article  CAS  Google Scholar 

  49. Estorch M. Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med. 1990;31:1965.

    CAS  PubMed  Google Scholar 

  50. Volkova M. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chatterjee K. Vincristine attenuates doxorubicin cardiotoxicity. Biochem Biophys Res Commun. 2008;373:555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Cardinale D. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213.

    Article  CAS  PubMed  Google Scholar 

  53. Alter P. Cardiotoxicity of 5-fluorouracil. Cardiovasc Hematol Agents Med Chem. 2006;4(1):1.

    Article  CAS  PubMed  Google Scholar 

  54. Becker K. Cardiotoxicity of the antiproliferative compound fluorouracil. Drugs. 1999;57(4):475.

    Article  CAS  PubMed  Google Scholar 

  55. Saif MW. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8(2):191–202. doi:10.1517/14740330902733961.

    Article  CAS  PubMed  Google Scholar 

  56. Endo A. Capecitabine induces both cardiomyopathy and multifocal cerebral leukoencephalopathy. Int Heart J. 2013;54(6):417.

    Article  PubMed  Google Scholar 

  57. Shah NR. Ventricular fibrillation as a likely consequence of capecitabine-induced coronary vasospasm. J Oncol Pharm Pract. 2012;18(1):132. doi:10.1177/1078155211399164. Epub 2011 Feb 14.

    Article  CAS  PubMed  Google Scholar 

  58. Y-Hassan S. Capecitabine caused cardiogenic shock through induction of global Takotsubo syndrome. Cardiovasc Revasc Med. 2013;14(1):57. doi:10.1016/j.carrev.2012.10.001. Epub 2012 Dec 5.

    Article  PubMed  Google Scholar 

  59. Kufe DW, editor. Alkylating agents Holland-Frei cancer medicine. 6th ed. Hamilton: BC Decker; 2003.

    Google Scholar 

  60. Cascales A. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int J Cardiol. 2012;154(3):282.

    Article  PubMed  Google Scholar 

  61. Zhang S. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639.

    Article  PubMed  Google Scholar 

  62. Leone TC. Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harb Symp Quant Biol. 2011;76:175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Chee Chew L. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 2004;279:8290.

    Article  Google Scholar 

  64. Prezioso L. Cancer treatment-induced cardiotoxicity: a cardiac stem cell disease? Cardiovasc Hematol Agents Med Chem. 2010;8(1):55.

    Article  CAS  PubMed  Google Scholar 

  65. Arbel Y. QT prolongation and Torsades de Pointes in patients previously treated with anthracyclines. Anticancer Drugs. 2007;18(4):493.

    Article  CAS  PubMed  Google Scholar 

  66. Saadettin K. Doxorubicin-induced second degree and complete atrioventricular block. Europace. 2005;7:227.

    Google Scholar 

  67. Alehan D. Tissue Doppler evaluation of systolic and diastolic cardiac functions in long-term survivors of Hodgkin lymphoma. Pediatr Blood Cancer. 2012;58:250.

    Article  PubMed  Google Scholar 

  68. Shan K. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996;125:47.

    Article  CAS  PubMed  Google Scholar 

  69. Nakamae H. QT dispersion correlates with systolic rather than diastolic parameters in patients receiving anthracycline therapy. Intern Med. 2004;43:379.

    Article  CAS  PubMed  Google Scholar 

  70. Couch RD. Sudden cardiac death following adriamycin therapy. Cancer. 1981;48:38.

    Article  CAS  PubMed  Google Scholar 

  71. Nagla A. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18:607.

    Article  Google Scholar 

  72. Nakamae H. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and methylprednisolone. Cancer. 2005;104(11):2492.

    Article  CAS  PubMed  Google Scholar 

  73. Minotti G. Pharmacology at work for cardio-oncology: ranolazine to treat early cardiotoxicity induced by antitumor drugs. J Pharmacol Exp Ther. 2013;346:343.

    Article  CAS  PubMed  Google Scholar 

  74. Paul F. Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2007;78(2):198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Yeh ETH. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231.

    Article  CAS  PubMed  Google Scholar 

  76. Altena R. Longitudinal changes in cardiac function after cisplatin-based chemotherapy for testicular cancer. Ann Oncol. 2011;22(10):2286.

    Article  CAS  PubMed  Google Scholar 

  77. Togna GI. Cisplatin triggers platelet activation. Thromb Res. 2000;99(5):503.

    Article  CAS  PubMed  Google Scholar 

  78. Kuenen BC. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. J Clin Oncol. 2003;21(11):2192.

    Article  CAS  PubMed  Google Scholar 

  79. Guglin M. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11:1579.

    Article  PubMed  Google Scholar 

  80. Dumontet C. BCIRG 001 molecular analysis: prognostic factors in node-positive breast cancer patients receiving adjuvant chemotherapy. Clin Cancer Res. 2010;16(15):3988.

    Article  CAS  PubMed  Google Scholar 

  81. Rowinsky EK. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9:1704.

    CAS  PubMed  Google Scholar 

  82. Kolfschoten GM. Variation in the kinetics of caspase-3 activation, Bcl-2 phosphorylation and apoptotic morphology in unselected human ovarian cancer cell lines as a response to docetaxel. Biochem Pharmacol. 2002;63(4):723.

    Article  Google Scholar 

  83. Force T. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332.

    Article  CAS  PubMed  Google Scholar 

  84. Lipshultz SE. Long-term cardiovascular toxicity in children, adolescents and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128:1927. doi:doi:10.1016/j.eritrevonc.2011.01.009.

  85. Yeh TH. Cardiovascular complications of cancer therapy diagnosis, pathogenesis, and management. Circulation. 2004;109:3122.

    Article  PubMed  Google Scholar 

  86. Pereg D. Bevacizumab treatment for cancer patients with cardiovascular disease: a double edged sword? Eur Heart J. 2008;29:2325.

    Article  CAS  PubMed  Google Scholar 

  87. Scappaticci FA. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232.

    Article  PubMed  Google Scholar 

  88. Curigliano G. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53:94.

    Article  CAS  PubMed  Google Scholar 

  89. Curigliano G. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(7):vii 155.

    Google Scholar 

  90. Schmidinger M. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204.

    Article  PubMed  Google Scholar 

  91. Kaminetzky D. Denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Biologics. 2008;2(4):717.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Frankel SR. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117(4):292.

    Article  CAS  PubMed  Google Scholar 

  93. Barbey JT. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21(19):3609.

    Article  CAS  PubMed  Google Scholar 

  94. Unnikrishnan D. Cardiac monitoring of patients receiving arsenic trioxide therapy. Br J Haematol. 2004;124(5):610.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Asteggiano MD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asteggiano, R. (2015). Physiopathology and Toxic Heart Effects of Chemotherapy Drugs. In: Baron Esquivias, G., Asteggiano, R. (eds) Cardiac Management of Oncology Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-15808-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15808-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15807-5

  • Online ISBN: 978-3-319-15808-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics