Skip to main content

A Sharp Abelian Theorem for the Laplace Transform

  • Chapter
  • First Online:
Mathematical Statistics and Limit Theorems

Abstract

This paper states asymptotic equivalents for the moments of the Esscher transform of a distribution on \(\mathbb {R}\) with smooth density in the upper tail. As a by-product it provides a tail approximation for its moment generating function, and shows that the Esscher transforms have a Gaussian behavior for large values of the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balkema, A. A., Klüppelberg, C., & Resnick, S. I. (1993). Densities with Gaussian tails. Proceedings of the London Mathematical Society, 66, 568–588.

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. (1978). Information and exponential families in statistical theory. Chichester: Wiley.

    MATH  Google Scholar 

  • Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Borovkov, A. A. (2008). Tauberian and Abelian theorems for rapidly decreasing distributions and their applications to stable laws. Siberian Mathematical Journal, 49, 796–805.

    Article  MathSciNet  Google Scholar 

  • Broniatowski, M., & Fuchs, A. (1995). Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions. Advances in Mathematics, 116, 12–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Broniatowski, M., & Mason, D. M. (1994). Extended large deviations. Journal of Theoretical Probability, 7, 647–666.

    Article  MATH  MathSciNet  Google Scholar 

  • Feigin, P. D., & Yashchin, E. (1983). On a strong Tauberian result. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65, 35–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. II). New York: Wiley.

    MATH  Google Scholar 

  • Juszczak, D., & Nagaev, A. V. (2004). Local large deviation theorem for sums of i.i.d. random vectors when the Cramér condition holds in the whole space. Probability and Mathematical Statistics, 24, 297–320.

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank an anonymous referee for comments and suggestions which helped greatly to the improvement on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Broniatowski .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

The following lemma provides a simple argument for the local uniform convergence of regularly varying functions.

Lemma 1

Consider \(l(t)\in RV(\alpha ), \alpha \in \mathbb {R}\). For any function \(f\) such that \(f(t)\underset{t\rightarrow \infty }{=}o(t)\), it holds

$$\begin{aligned} \sup _{\vert x\vert \le f(t)}\vert l(t+x)\vert \underset{t\rightarrow \infty }{\sim }\vert l(t)\vert . \end{aligned}$$
(17)

If \(f(t)=at\) with \(0<a<1\), then it holds

$$\begin{aligned} \sup _{\vert x\vert \le at}\vert l(t+x)\vert \underset{t\rightarrow \infty }{\sim }(1+a)^\alpha \vert l(t)\vert . \end{aligned}$$
(18)

Proof

By Theorem 1.5.2 of Bingham et al. (1987), if \(l(t)\in RV(\alpha )\), then for all \(I\)

$$ \sup _{\lambda \in I}\left| \frac{l(\lambda t)}{l(t)}-\lambda ^\alpha \right| \underset{t\rightarrow \infty }{\longrightarrow }0, $$

with \(I=[A, B]\ (0<A\le B<\infty )\) if \(\alpha =0\), \(I=(0, B]\ (0<B<\infty )\) if \(\alpha >0\) and \(I=[A, \infty ) \ (0<A<\infty )\) if \(\alpha <0\).

Putting \(\lambda =1+x/t\) with \(f(t)\underset{t\rightarrow \infty }{=}o(t)\), we obtain

$$ \sup _{\vert x\vert \le f(t)}\left| \frac{l(t+x)}{l(t)}\right| -\left( 1+\frac{f(t)}{t}\right) ^\alpha \underset{t\rightarrow \infty }{\longrightarrow }0, $$

which implies (17).

When \(f(t)=at\) with \(0<a<1\), we get

$$ \sup _{\vert x\vert \le at}\left| \frac{l(t+x)}{l(t)}\right| -(1+a)^\alpha \underset{t\rightarrow \infty }{\longrightarrow }0, $$

which implies (18).   \(\square \)

Now we quote some simple expansions pertaining to the function \(h\) under the two cases considered in the above Sect. 2.

Lemma 2

We have under Case 1,

$$\begin{aligned} h^{\prime }(x)&=\frac{h(x)}{x}[\beta +\varepsilon (x)],\\ h^{(2)}(x)&=\frac{h(x)}{x^{2}}[\beta (\beta -1)+a\varepsilon (x)+\varepsilon ^{2}(x)+x\varepsilon ^{\prime }(x)],\\ h^{(3)}(x)&=\frac{h(x)}{x^{3}}[\beta (\beta -1)(\beta -2)+b\varepsilon (x)+c\varepsilon ^{2}(x)+\varepsilon ^{3}(x)\\&\qquad \qquad \qquad +x\varepsilon ^{\prime }(x)(d+e\varepsilon (x))+x^{2}\varepsilon ^{(2)}(x)]. \end{aligned}$$

where \(a,b,c,d,e\) are some real constants.

Corollary 1

We have under Case 1, \(h^{\prime }(x)\underset{x\rightarrow \infty }{\sim }\beta h(x)/x\) and \(|h^{(i)}(x)|\le C_{i}h(x)/x^{i},i=1,2,3\), for some constants \(C_{i}\) and for large \(x\).

Corollary 2

We have under Case 1, \(\hat{x}(t)=\psi (t)\in RV(1/\beta )\) (see Theorem (1.5.15) of Bingham et al. (1987)) and \(\hat{\sigma }^{2}(t)=\psi ^{\prime }(t)\sim \beta ^{-1}\psi (t)/t\in RV(1/\beta -1)\).

It also holds

Lemma 3

We have under Case 2,

$$ \psi ^{(2)}(t)\underset{t\rightarrow \infty }{\sim }-\frac{\psi (t)\varepsilon (t)}{t^{2}}\ and\ \psi ^{(3)}(t)\underset{t\rightarrow \infty }{\sim }2\frac{\psi (t)\varepsilon (t)}{t^{3}}. $$

Lemma 4

We have under Case 2,

$$\begin{aligned} h^{\prime }(\psi (t))&=\frac{1}{\psi ^{\prime }(t)}=\frac{t}{\psi (t)\varepsilon (t)},\\ h^{(2)}(\psi (t))&=-\frac{\psi ^{(2)}(t)}{(\psi ^{\prime }(t))^{3}}\underset{t\rightarrow \infty }{\sim }\frac{t}{\psi ^{2}(t)\varepsilon ^{2}(t)},\\ h^{(3)}(\psi (t))&=\frac{3(\psi ^{(2)}(t))^{2}-\psi ^{(3)}(t)\psi ^{\prime }(t)}{(\psi ^{\prime }(t))^{5}}\underset{t\rightarrow \infty }{\sim }\frac{t}{\psi ^{3}(t)\varepsilon ^{3}(t)}. \end{aligned}$$

Corollary 3

We have under Case 2, \(\hat{x}(t)=\psi (t)\in RV(0)\) and \(\hat{\sigma }^{2}(t)=\psi ^{\prime }(t)=\psi (t)\varepsilon (t)/t\in RV(-1)\). Moreover, we have \(h^{(i)}(\psi (t))\in RV(1),i=1,2,3\).

Before beginning the proofs of our results we quote that the regularity conditions (9) and (12) pertaining to the function \(h\) allow for the above simple expansions. Substituting the constant \(c\) in (9) and (12) by functions \(x\rightarrow c(x)\) which converge smoothly to some positive constant \(c\) adds noticeable complexity.

We now come to the proofs of five lemmas which provide the asymptotics leading to Theorems 1 and 2.

Lemma 5

It holds

$$ \frac{\log \hat{\sigma }}{\int _{1}^{t}\psi (u)du}\underset{t\rightarrow \infty }{\longrightarrow }0. $$

Proof

By Corollaries 2 and 3, we have that \(\psi (t)\in RV(1/\beta )\) in Case 1 and \(\psi (t)\in RV(0)\) in Case 2. Using Theorem 1 of Feller (1971), Sect. 8.9 or Proposition 1.5.8 of Bingham et al. (1987), we obtain

$$\begin{aligned} \int _{1}^{t}\psi (u)du\underset{t\rightarrow \infty }{\sim } \left\{ \begin{array}{ll} t\psi (t)/(1+1/\beta )\in RV(1+1/\beta ) &{} \text{ if } h\in RV(\beta )\\ t\psi (t)\in RV(1) &{} \text{ if } h \text{ is } \text{ rapidly } \text{ varying } \end{array} \right. . \end{aligned}$$
(19)

Also by Corollaries 2 and 3, we have that \(\hat{\sigma }^2\in RV(1/\beta -1)\) in Case 1 and \(\hat{\sigma }^2\in RV(-1)\) in Case 2. Thus \(t\mapsto \log \hat{\sigma }\in RV(0)\) by composition and

$$ \frac{\log \hat{\sigma }}{\int _{1}^{t}\psi (u)du}\underset{t\rightarrow \infty }{\sim } \left\{ \begin{array}{ll} \frac{\beta +1}{\beta }\times \frac{\log \hat{\sigma }}{t\psi (t)}\in RV\left( -1-\frac{1}{\beta }\right) &{} \text{ if } h\in RV(\beta )\\ \frac{\log \hat{\sigma }}{t\psi (t)}\in RV(-1) &{} \text{ if } h \text{ is } \text{ rapidly } \text{ varying } \end{array} \right. , $$

which proves the claim.    \(\square \)

The next steps of the proof make use of the function

$$ L(t):=\left( \log t\right) ^{3}. $$

Lemma 6

We have

$$ \sup _{|x|\le \hat{\sigma }L(t)}\left| \frac{h^{(3)}(\hat{x}+x)}{h^{(2)}(\hat{x})}\right| \hat{\sigma }L^{4}(t)\underset{t\rightarrow \infty }{\longrightarrow }0. $$

Proof

Case 1. By Corollary 1 and by (11) we have

$$ |h^{(3)}(x)|\le C\frac{|h^{(2)}(x)|}{x}, $$

for some constant \(C\) and \(x\) large. Since, by Corollary 2, \(\hat{x}\in RV(1/\beta )\) and \(\hat{\sigma }^{2}\in RV(1/\beta -1)\), we have

$$ \frac{|x|}{\hat{x}}\le \frac{\hat{\sigma }L(t)}{\hat{x}}\in RV\left( -\frac{1}{2}-\frac{1}{2\beta }\right) $$

and \(|x|/\hat{x}\underset{t\rightarrow \infty }{\longrightarrow }0\) uniformly in \(\{x:|x|\le \hat{\sigma }L(t)\}\). For large \(t\) and all \(x\) such that \(|x|\le \hat{\sigma }L(t)\), we have

$$ |h^{(3)}(\hat{x}+x)|\le C\frac{|h^{(2)}(\hat{x}+x)|}{\hat{x}+x}\le C\sup _{|x|\le \hat{\sigma }L(t)}\frac{|h^{(2)}(\hat{x}+x)|}{\hat{x}+x} $$

whence

$$ \sup _{|x|\le \hat{\sigma }L(t)}|h^{(3)}(\hat{x}+x)|\le C\sup _{|x|\le \hat{\sigma }L(t)}\frac{|h^{(2)}(\hat{x}+x)|}{\hat{x}+x} $$

where

$$ \sup _{|x|\le \hat{\sigma }L(t)}\frac{|h^{(2)}(\hat{x}+x)|}{\hat{x} +x}\underset{t\rightarrow \infty }{\sim }\frac{|h^{(2)}(\hat{x})|}{\hat{x}}, $$

using (17) for the regularly varying function \(|h^{(2)}(\hat{x})|\in RV(\theta /\beta )\), with \(f(t)=\hat{\sigma }L(t)\underset{t\rightarrow \infty }{=}o(\hat{x})\). Thus for \(t\) large enough and for all \(\delta >0\)

$$ \sup _{|x|\le \hat{\sigma }L^{4}(t)}\left| \frac{h^{(3)}(\hat{x}+x)}{h^{(2)}(\hat{x})}\right| \hat{\sigma }L^{4}(t)\le C\frac{\hat{\sigma }L^{4}(t)}{\hat{x}}(1+\delta )\in RV\left( \frac{1}{2\beta }-\frac{1}{2}-\frac{1}{\beta }\right) , $$

which proves Lemma 6 in Case 1.

Case 2. By Lemma 4, we have that \(h^{(3)}(\psi (t))\in RV(1)\). Using (18), we have for \(0<a<1\) and \(t\) large enough

$$ \sup _{|v|\le at}|h^{(3)}(\psi (t+v))|\underset{t\rightarrow \infty }{\sim }(1+a)h^{(3)}(\psi (t)). $$

In the present case \(\hat{x}\in RV(0)\) and \(\hat{\sigma }^{2}\in RV(-1)\). Setting \(\psi (t+v)=\hat{x}+x=\psi (t)+x\), we have \(x=\psi (t+v)-\psi (t)\) and \(A:=\psi (t-at)-\psi (t)\le x\le \psi (t+at)-\psi (t)=:B\), since \(t\mapsto \psi (t)\) is an increasing function. It follows that

$$ \sup _{|v|\le at}h^{(3)}(\psi (t+v))=\sup _{A\le x\le B}h^{(3)}(\hat{x}+x). $$

Now note that (cf. p. 127 in Bingham et al. (1987))

$$\begin{aligned} B&=\psi (t+at)-\psi (t)=\int _{t}^{t+at}\psi ^{\prime }(z)dz \\&=\int _{t}^{t+at} \frac{\psi (z)\varepsilon (z)}{z}dz\underset{t\rightarrow \infty }{\sim } \psi (t)\varepsilon (t)\log (1+a), \end{aligned}$$

since \(\psi (t)\varepsilon (t)\in RV(0)\). Moreover, we have

$$ \frac{\hat{\sigma }L(t)}{\psi (t)\varepsilon (t)}\in RV(-1) \text{ and } \frac{\hat{\sigma }L(t)}{\psi (t)\varepsilon (t)}\underset{t\rightarrow \infty }{\longrightarrow }0. $$

It follows that \(\hat{\sigma }L(t)\underset{t\rightarrow \infty }{=}o(B)\) and in a similar way, we have \(\hat{\sigma }L(t)\underset{t\rightarrow \infty }{=}o(A)\). Using Lemma 4 and since \(\hat{\sigma }L^{4}(t)\in RV(-1/2)\), it follows that for \(t\) large enough and for all \(\delta >0\)

$$\begin{aligned} \sup _{|x|\le \hat{\sigma }L(t)}\frac{|h^{(3)}(\psi (t+v))|}{|h^{(2)}(\psi (t))|}\hat{\sigma }L^{4}(t)&\le \sup _{A\le x\le B}\frac{|h^{(3)} (\psi (t+v))|}{|h^{(2)}(\psi (t))|}\hat{\sigma }L^{4}(t)\\&\le (1+a)\frac{\hat{\sigma }L^{4}(t)}{\psi (t)\varepsilon (t)}(1+\delta )\in RV\left( -\frac{1}{2}\right) , \end{aligned}$$

which concludes the proof of Lemma 6 in Case 2.    \(\square \)

Lemma 7

We have

$$\begin{aligned}&|h^{(2)}(\hat{x})|\hat{\sigma }^{4}\underset{t\rightarrow \infty }{\longrightarrow }0,\\&|h^{(2)}(\hat{x})|\hat{\sigma }^{3}L(t)\underset{t\rightarrow \infty }{\longrightarrow }0. \end{aligned}$$

Proof

Case 1. By Corollaries 1 and 2, we have

$$ |h^{(2)}(\hat{x})|\hat{\sigma }^{4}\le \frac{C_{2}}{\beta ^{2}t}\in RV(-1) $$

and

$$ |h^{(2)}(\hat{x})|\hat{\sigma }^{3}L(t)\le \frac{C_{2}}{\beta ^{3/2}}\frac{L(t)}{\sqrt{t\psi (t)}}\in RV\left( -\frac{1}{2\beta }-\frac{1}{2}\right) , $$

proving the claim.

Case 2. We have by Lemma 4 and Corollary 3

$$ h^{(2)}(\hat{x})\hat{\sigma }^{4}\underset{t\rightarrow \infty }{\sim }\frac{1}{t}\in RV(-1) $$

and

$$ h^{(2)}(\hat{x})\hat{\sigma }^{3}L(t)\underset{t\rightarrow \infty }{\sim } \frac{L(t)}{\sqrt{t\psi (t)\varepsilon (t)}}\in RV\left( -\frac{1}{2}\right) , $$

which concludes the proof of Lemma 7.    \(\square \)

We now define some functions to be used in the sequel. A Taylor–Lagrange expansion of \(K(x,t)\) in a neighborhood of \(\hat{x}\) yields

$$\begin{aligned} K(x,t)=K(\hat{x},t)-\frac{1}{2}h^{\prime }(\hat{x})(x-\hat{x})^{2}-\frac{1}{6}h^{(2)}(\hat{x})(x-\hat{x})^{3}+\varepsilon (x,t), \end{aligned}$$
(20)

where, for some \(\theta \in (0,1)\),

$$\begin{aligned} \varepsilon (x,t)=-\frac{1}{24}h^{(3)}(\hat{x}+\theta (x-\hat{x}))(x-\hat{x})^{4}.\end{aligned}$$
(21)

Lemma 8

We have

$$ \sup _{y\in [-L(t),L(t)]}\frac{|\xi (\hat{\sigma }y+\hat{x},t)|}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\underset{t\rightarrow \infty }{\longrightarrow }0, $$

where \(\xi (x,t)=\varepsilon (x,t)+q(x)\) and \(\varepsilon (x,t)\) is defined in (21).

Proof

For \(y\in [-L(t),L(t)]\), by 21, it holds

$$ \left| \frac{\varepsilon (\hat{\sigma }y+\hat{x},t)}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right| \le \left| \frac{h^{(3)}(\hat{x}+\theta \hat{\sigma }y)(\hat{\sigma }y)^{4}}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right| \le \left| \frac{h^{(3)}(\hat{x}+\theta \hat{\sigma }y)\hat{\sigma }L^{4}(t)}{h^{(2)}(\hat{x})}\right| , $$

with \(\theta \in (0,1)\). Let \(x=\theta \hat{\sigma }y\). It then holds \(|x|\le \hat{\sigma }L(t)\). Therefore by Lemma 6

$$ \sup _{y\in [-L(t),L(t)]}\left| \frac{\varepsilon (\hat{\sigma }y+\hat{x},t)|}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right| \le \sup _{|x|\le \hat{\sigma }L(t)}\left| \frac{h^{(3)}(\hat{x}+x)}{h^{(2)}(\hat{x})}\hat{\sigma }L^{4}(t)\right| \underset{t\rightarrow \infty }{\longrightarrow }0. $$

It remains to prove that

$$\begin{aligned} \sup _{y\in [-L(t),L(t)]}\left| \frac{q(\hat{\sigma }y+\hat{x})}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right| \underset{t\rightarrow \infty }{\longrightarrow }0. \end{aligned}$$
(22)

Case 1. By (11) and by composition, \(|h^{(2)}(\hat{x})|\in RV(\theta /\beta )\). Using Corollary 1 we obtain

$$ |h^{(2)}(\hat{x})\hat{\sigma }^{3}|\underset{t\rightarrow \infty }{\sim }\frac{|h^{(2)}(\hat{x})|\psi ^{3/2}(t)}{\beta ^{3/2}t^{3/2}}\in RV\left( \frac{\theta }{\beta }+\frac{3}{2\beta }-\frac{3}{2}\right) . $$

Since, by (14), \(|q(\hat{x})|\in RV(\eta /\beta )\), for \(\eta <\theta -3\beta /2+3/2\) and putting \(x=\hat{\sigma }y\), we obtain

$$\begin{aligned} \sup _{y\in [-L(t),L(t)]}\left| \frac{q(\hat{\sigma }y+\hat{x} )}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right|&=\sup _{|x|\le \hat{\sigma }L(t)}\left| \frac{q(\hat{x}+x)}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right| \\&\underset{t\rightarrow \infty }{\sim }\frac{|q(\hat{x})|}{|h^{(2)}(\hat{x})\hat{\sigma }^{3}|}\in RV\left( \frac{\eta -\theta }{\beta }-\frac{3}{2\beta }+\frac{3}{2}\right) , \end{aligned}$$

which proves (22).

Case 2. By Lemma 4 and Corollary 3, we have

$$ |h^{(2)}(\hat{x})\hat{\sigma }^{3}|\underset{t\rightarrow \infty }{\sim }\frac{1}{\sqrt{t\psi (t)\varepsilon (t)}}\in RV\left( -\frac{1}{2}\right) . $$

As in Lemma 6, since by (15), \(q(\psi (t))\in RV(\eta )\), then we obtain, with \(\eta <-1/2\)

$$\begin{aligned} \sup _{y\in [-L(t),L(t)]}\left| \frac{q(\hat{\sigma }y+\hat{x} )}{h^{(2)}(\hat{x})\hat{\sigma }^{3}}\right|&=\sup _{|x|\le \hat{\sigma }L(t)}\left| \frac{q(\hat{x}+x)}{h^{(2)}(\hat{x})\hat{\sigma }^{3} }\right| \\&\le \sup _{|v|\le at}\left| \frac{q(\psi (t+v))}{h^{(2)}(\hat{x} )\hat{\sigma }^{3}}\right| \\&\le (1+a)^{\eta }q(\psi (t))\sqrt{t\psi (t)\varepsilon (t)}(1+\delta )\in RV\left( \eta +\frac{1}{2}\right) , \end{aligned}$$

for all \(\delta >0\), with \(a<1\), \(t\) large enough and \(\eta +1/2<0\). This proves (22).    \(\square \)

Lemma 9

For \(\alpha \in \mathbb {N}\), denote

$$ \varPsi (t,\alpha ):=\int _{0}^{\infty }(x-\hat{x})^{\alpha }e^{tx}p(x)dx. $$

Then

$$ \varPsi (t,\alpha )\underset{t\rightarrow \infty }{=}\hat{\sigma }^{\alpha +1}e^{K(\hat{x},t)}T_{1}(t,\alpha )(1+o(1)), $$

where

$$\begin{aligned} T_{1}(t,\alpha )=\int _{-\frac{L^{1/3}(t)}{\sqrt{2}}}^{\frac{L^{1/3}(t)}{\sqrt{2}}}y^{\alpha }\exp \left( -\frac{y^{2}}{2}\right) dy-\frac{h^{(2)}(\hat{x} )\hat{\sigma }^{3}}{6}\int _{-\frac{L^{1/3}(t)}{\sqrt{2}}}^{\frac{L^{1/3} (t)}{\sqrt{2}}}y^{3+\alpha }\exp \left( -\frac{y^{2}}{2}\right) dy. \end{aligned}$$
(23)

Proof

We define the interval \(I_{t}\) as follows

$$ I_{t}:=\left( -\frac{L^{\frac{1}{3}}(t)\hat{\sigma }}{\sqrt{2}},\frac{L^{\frac{1}{3}}(t)\hat{\sigma }}{\sqrt{2}}\right) . $$

For large enough \(\tau \), when \(t\rightarrow \infty \) we can partition \(\mathbb {R}_{+}\) into

$$ \mathbb {R}_{+}=\{x:0<x<\tau \}\cup \{x:x\in \hat{x}+I_{t}\}\cup \{x:x\ge \tau ,x\not \in \hat{x}+I_{t}\}, $$

where for \(x>\tau \), \(q(x)<\log 2\). Thus we have

$$\begin{aligned} p(x)<2e^{-g(x)}. \end{aligned}$$
(24)

For fixed \(\tau \), \(\{x:0<x<\tau \}\cap \{x:x\in \hat{x}+I_{t} \}=\emptyset \). Therefore \(\tau <\hat{x}-\frac{L^{\frac{1}{3}}(t)\hat{\sigma }}{\sqrt{2}}\le \hat{x}\) for \(t\) large enough. Hence it holds

$$\begin{aligned} \varPsi (t,\alpha )=:\varPsi _{1}(t,\alpha )+\varPsi _{2}(t,\alpha )+\varPsi _{3}(t,\alpha ), \end{aligned}$$
(25)

where

$$\begin{aligned} \varPsi _{1}(t,\alpha )&=\int _{0}^{\tau }(x-\hat{x})^{\alpha }e^{tx}p(x)dx,\\ \varPsi _{2}(t,\alpha )&=\int _{x\in \hat{x}+I_{t}}(x-\hat{x})^{\alpha } e^{tx}p(x)dx,\\ \varPsi _{3}(t,\alpha )&=\int _{x\not \in \hat{x}+I_{t},x\ge \tau }(x-\hat{x})^{\alpha }e^{tx}p(x)dx. \end{aligned}$$

We estimate \(\varPsi _{1}(t,\alpha )\), \(\varPsi _{2}(t,\alpha )\) and \(\varPsi _{3} (t,\alpha )\) in Step 1, Step 2 and Step 3.

Step 1: Since \(q\) is bounded, we consider

$$ \log d=\sup _{x\in (0, \tau )}q(x) $$

and for \(t\) large enough, we have

$$ \left| \varPsi _{1}(t,\alpha )\right| \le \int _{0}^{\tau }\left| x-\hat{x}\right| ^{\alpha }e^{tx}p(x)dx\le d\int _{0}^{\tau }\hat{x}^{\alpha }e^{tx}dx, $$

since when \(0<x<\tau <\hat{x}\) then \(\left| x-\hat{x}\right| =\hat{x}-x<\hat{x}\) for \(t\) large enough and \(g\) is positive.Since, for \(t\) large enough, we have

$$ \int _{0}^{\tau }\hat{x}^{\alpha }e^{tx}dx=\hat{x}^{\alpha }\frac{e^{t\tau }}{t}-\frac{\hat{x}^{\alpha }}{t}\le \hat{x}^{\alpha }\frac{e^{t\tau }}{t}, $$

we obtain

$$\begin{aligned} \left| \varPsi _{1}(t,\alpha )\right| \le d\hat{x}^{\alpha }\frac{e^{t\tau }}{t}. \end{aligned}$$
(26)

We now show that for \(h\in \fancyscript{R}\), it holds

$$\begin{aligned} \hat{x}^{\alpha }\frac{e^{t\tau }}{t}\underset{t\rightarrow \infty }{=}o(\vert \hat{\sigma }^{\alpha +1}\vert e^{K(\hat{x},t)}\vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert ), \end{aligned}$$
(27)

with \(K(x,t)\) defined as in (16). This is equivalent to

$$ \frac{\hat{x}^{\alpha }e^{t\tau }}{t\vert \hat{\sigma }^{\alpha +4}h^{(2)}(\hat{x})\vert }\underset{t\rightarrow \infty }{=}o(e^{K(\hat{x},t)}), $$

which is implied by

$$\begin{aligned} -(\alpha +4)\log \vert \hat{\sigma }\vert -\log t+\alpha \log \hat{x}+\tau t-\log \vert h^{(2)}(\hat{x})\vert \underset{t\rightarrow \infty }{=}o(K(\hat{x},t)), \end{aligned}$$
(28)

if \(K(\hat{x},t)\underset{t\rightarrow \infty }{\longrightarrow }\infty \).

Setting \(u=h(v)\) in \(\int _{1}^{t}\psi (u)du\), we have

$$ \int _{1}^{t}\psi (u)du=t\psi (t)-\psi (1)-g(\psi (t))+g(\psi (1)). $$

Since \(K(\hat{x},t)=t\psi (t)-g(\psi (t))\), we obtain

$$\begin{aligned} K(\hat{x},t)=\int _{1}^{t}\psi (u)du+\psi (1)-g(\psi (1))\underset{t\rightarrow \infty }{\sim }\int _{1}^{t}\psi (u)du. \end{aligned}$$
(29)

Let us denote (19) by

$$\begin{aligned} K(\hat{x},t)\underset{t\rightarrow \infty }{\sim }at\psi (t), \end{aligned}$$
(30)

with

$$ a=\left\{ \begin{array} [c]{ll} \frac{\beta }{\beta +1} &{} \text{ if } h\in RV(\beta )\\ 1 &{} \text{ if } h \text{ is } \text{ rapidly } \text{ varying } \end{array} \right. . $$

We have to show that each term in (28) is \(o(K(\hat{x},t))\).

  1. 1.

    By Lemma 5, \(\log \hat{\sigma }\underset{t\rightarrow \infty }{=}o(\int _{1}^{t}\psi (u)du)\). Hence \(\log \hat{\sigma }\underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\).

  2. 2.

    By Corollaries 2 and 3, we have

    $$ \frac{t}{K(\hat{x},t)}\underset{t\rightarrow \infty }{\sim }\frac{1}{a\psi (t)}\underset{t\rightarrow \infty }{\longrightarrow }0. $$

    Thus \(t\underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\).

  3. 3.

    Since \(\hat{x}=\psi (t)\underset{t\rightarrow \infty }{\longrightarrow }\infty \), it holds

    $$ \left| \frac{\log \hat{x}}{K(\hat{x},t)}\right| \le C\frac{\psi (t)}{K(\hat{x},t)}, $$

    for some positive constant \(C\) and \(t\) large enough. Moreover by (30), we have

    $$ \frac{\psi (t)}{K(\hat{x},t)}\underset{t\rightarrow \infty }{\sim }\frac{1}{at}\underset{t\rightarrow \infty }{\longrightarrow }0. $$

    Hence \(\log \hat{x}\underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\).

  4. 4.

    Using (30), \(\log \vert h^{(2)}(\hat{x})\vert \in RV(0)\) and \(\log \vert h^{(2)}(\hat{x})\vert \underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\).

  5. 5.

    Since \(\log t\underset{t\rightarrow \infty }{=}o(t)\) and \(t\underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\), we obtain \(\log t\underset{t\rightarrow \infty }{=}o(K(\hat{x},t))\).

Since (28) holds and \(K(\hat{x},t)\underset{t\rightarrow \infty }{\longrightarrow }\infty \) by (29) and (30), we then get (27).

Eqs. (26) and (27) yield together

$$\begin{aligned} \left| \varPsi _{1}(t,\alpha )\right| \underset{t\rightarrow \infty }{=}o(\vert \hat{\sigma }^{\alpha +1}\vert e^{K(\hat{x},t)}\vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert ). \end{aligned}$$
(31)

When \(\alpha \) is even,

$$\begin{aligned} T_{1}(t,\alpha )=\int _{-\frac{t^{1/3}}{\sqrt{2}}}^{\frac{t^{1/3}}{\sqrt{2}}}y^{\alpha }\exp \left( -\frac{y^{2}}{2}\right) dy\underset{t\rightarrow \infty }{\sim }\sqrt{2\pi }M_{\alpha }, \end{aligned}$$
(32)

where \(M_{\alpha }\) is the moment of order \(\alpha \) of a standard normal distribution. Thus by Lemma 7 we have

$$\begin{aligned} \frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{T_{1}(t,\alpha )}\underset{t\rightarrow \infty }{\longrightarrow }0. \end{aligned}$$
(33)

When \(\alpha \) is odd,

$$\begin{aligned} T_{1}(t,\alpha )=-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\int _{-\frac{l^{\frac{1}{3}}}{\sqrt{2}}}^{\frac{l^{\frac{1}{3}}}{\sqrt{2}}}y^{3+\alpha }\exp \left( -\frac{y^{2}}{2}\right) dy\underset{t\rightarrow \infty }{\sim }-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\sqrt{2\pi }M_{\alpha +3}, \end{aligned}$$
(34)

where \(M_{\alpha +3}\) is the moment of order \(\alpha +3\) of a standard normal distribution. Thus we have

$$\begin{aligned} \frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{T_{1}(t,\alpha )}\underset{t\rightarrow \infty }{\sim }-\frac{6}{\sqrt{2\pi }M_{\alpha +3}}. \end{aligned}$$
(35)

Combined with (31), (33) and (35) imply for \(\alpha \in \mathbb {N}\)

$$\begin{aligned} \left| \varPsi _{1}(t,\alpha )\right| \underset{t\rightarrow \infty }{=}o(\hat{\sigma }^{\alpha +1}e^{K(\hat{x},t)}T_{1}(t,\alpha )). \end{aligned}$$
(36)

Step 2: By (6) and (20)

$$\begin{aligned} \varPsi _{2}(t,\alpha )&=\int _{x\in \hat{x}+I_{t}}(x-\hat{x})^{\alpha }e^{K(x,t)+q(x)}dx\\&=\int _{x\in \hat{x}+I_{t}}(x-\hat{x})^{\alpha }e^{K(\hat{x},t)-\frac{1}{2}h^{\prime }(\hat{x})(x-\hat{x})^{2}-\frac{1}{6}h^{(2)}(\hat{x})(x-\hat{x})^{3}+\xi (x,t)}dx, \end{aligned}$$

where \(\xi (x,t)=\varepsilon (x,t)+q(x)\). Making the substitution \(y=(x-\hat{x})/\hat{\sigma }\), it holds

$$\begin{aligned} \varPsi _{2}(t,\alpha )=\hat{\sigma }^{\alpha +1}e^{K(\hat{x},t)} \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{\alpha }\exp \left( -\frac{y^{2}}{2}-\frac{\hat{\sigma }^{3}y^{3}}{6}h^{(2)}(\hat{x})+\xi (\hat{\sigma }y+\hat{x},t)\right) dy, \end{aligned}$$
(37)

since \(h^{\prime }(\hat{x})=1/\hat{\sigma }^{2}\).

On \(\left\{ y: y\in \left( -L^{\frac{1}{3}}(t)/\sqrt{2},L^{\frac{1}{3}}(t)/\sqrt{2}\right) \right\} \), by Lemma 7, we have

$$ \left| h^{(2)}(\hat{x})\hat{\sigma }^{3}y^{3}\right| \le \left| h^{(2)}(\hat{x})\hat{\sigma }^{3}L(t)\right| /2^{\frac{3}{2}} \underset{t\rightarrow \infty }{\longrightarrow }0. $$

Perform the first-order Taylor expansion

$$\begin{aligned} \exp \left( -\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}y^{3}+\xi (\hat{\sigma }y+\hat{x},t)\right) \underset{t\rightarrow \infty }{=} 1-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}y^{3}+\xi (\hat{\sigma }y+\hat{x},t)+o_{1}(t,y), \end{aligned}$$

where

$$\begin{aligned} o_{1}(t,y)=o\left( -\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}y^{3}+\xi (\hat{\sigma }y+\hat{x},t)\right) . \end{aligned}$$
(38)

We obtain

$$ \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{\alpha }\exp \left( -\frac{y^{2}}{2}-\frac{\hat{\sigma }^{3}y^{3}}{6}h^{(2)}(\hat{x})+\xi (\hat{\sigma }y+\hat{x},t)\right) dy =: T_{1}(t,\alpha )+T_{2}(t,\alpha ), $$

where \(T_{1}(t,\alpha )\) is defined in (23) and

$$\begin{aligned} T_{2}(t,\alpha ):=\int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left( \xi (\hat{\sigma }y+\hat{x} ,t)+o_{1}(t,y)\right) y^{\alpha }e^{-\frac{y^{2}}{2}}dy. \end{aligned}$$
(39)

Using (38) we have for \(t\) large enough

$$\begin{aligned} \left| T_{2}(t,\alpha )\right|&\le \sup _{y\in [-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}},\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}]}\left| \xi (\hat{\sigma }y+\hat{x},t)\right| \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left| y\right| ^{\alpha }e^{-\frac{y^{2}}{2}}dy\\&\qquad +\int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left( \left| o\left( \frac{h^{(2)} (\hat{x})\hat{\sigma }^{3}}{6}y^{3}\right) \right| +\left| o(\xi (\hat{\sigma }y+\hat{x},t))\right| \right) |y|^{\alpha }e^{-\frac{y^{2}}{2}}dy, \end{aligned}$$

where \(\sup _{y\in [-L^{\frac{1}{3}}(t)/\sqrt{2},L^{\frac{1}{3}}(t)/\sqrt{2}]}\left| \xi (\hat{\sigma }y+\hat{x},t)\right| \le \sup _{y\in [-L(t),L(t)]}\left| \xi (\hat{\sigma }y+\hat{x},t)\right| \) since \(L^{\frac{1}{3}}(t)/\sqrt{2}\le L(t)\) holds for \(t\) large enough. Thus

$$\begin{aligned} \left| T_{2}(t,\alpha )\right|&\le 2\sup _{y\in [-L(t),L(t)]}\left| \xi (\hat{\sigma }y+\hat{x},t)\right| \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left| y\right| ^{\alpha }e^{-\frac{y^{2}}{2}}dy\\&\qquad \qquad +\left| o\left( \frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\right) \right| \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}} ^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left| y\right| ^{3+\alpha }e^{-\frac{y^{2}}{2}}dy\\&\underset{t\rightarrow \infty }{=}\left| o\left( \frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\right) \right| \left( \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left| y\right| ^{\alpha }e^{-\frac{y^{2}}{2}}dy+\int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\left| y\right| ^{3+\alpha }e^{-\frac{y^{2}}{2}}dy\right) , \end{aligned}$$

where the last equality holds from Lemma 8. Since the integrals in the last equality are both bounded, it holds

$$\begin{aligned} T_{2}(t,\alpha )\underset{t\rightarrow \infty }{=}o(h^{(2)}(\hat{x})\hat{\sigma }^{3}). \end{aligned}$$
(40)

When \(\alpha \) is even, using (32) and Lemma 7

$$\begin{aligned} \left| \frac{T_{2}(t,\alpha )}{T_{1}(t,\alpha )}\right| \le \frac{\vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert }{\sqrt{2\pi }M_{\alpha }} \underset{t\rightarrow \infty }{\longrightarrow }0. \end{aligned}$$
(41)

When \(\alpha \) is odd, using (34), we get

$$\begin{aligned} \frac{T_{2}(t,\alpha )}{T_{1}(t,\alpha )}\underset{t\rightarrow \infty }{=} -\frac{6}{\sqrt{2\pi }M_{\alpha +3}}o(1)\underset{t\rightarrow \infty }{\longrightarrow }0. \end{aligned}$$
(42)

Now with \(\alpha \in \mathbb {N}\), by (41) and (42)

$$ T_{2}(t,\alpha )\underset{t\rightarrow \infty }{=}o(T_{1}(t,\alpha )), $$

which, combined with (37), yields

$$\begin{aligned} \varPsi _{2}(t,\alpha )=c\hat{\sigma }^{\alpha +1}e^{K(\hat{x},t)}T_{1}(t,\alpha )(1+o(1)). \end{aligned}$$
(43)

Step 3: The Three Chords Lemma implies, for \(x\mapsto K(x,t)\) concave and \((x,y,z)\in \mathbb {R}_{+}^{3}\) such that \(x<y<z\)

$$\begin{aligned} \frac{K(y,t)-K(z,t)}{y-z}\le \frac{K(x,t)-K(z,t)}{x-z}\le \frac{K(x,t)-K(y,t)}{x-y}. \end{aligned}$$
(44)

Since \(x\mapsto K(x,t)\) is concave and attains its maximum in \(\hat{x}\), we consider two cases: \(x<\hat{x}\) and \(x\ge \hat{x}\). After some calculus using (44) in each case, we get

$$\begin{aligned} K(x,t)-K(\hat{x},t)\le \frac{K(\hat{x}+sgn(x-\hat{x})\frac{L^{1/3} (t)\hat{\sigma }}{\sqrt{2}})-K(\hat{x},t)}{sgn(x-\hat{x})\frac{L^{1/3} (t)\hat{\sigma }}{\sqrt{2}}}(x-\hat{x}), \end{aligned}$$
(45)

where

$$\begin{aligned} sgn(x-\hat{x})= \left\{ \begin{array}{ll} 1 &{} \text{ if } x\ge \hat{x}\\ -1 &{} \text{ if } x<\hat{x} \end{array} \right. . \end{aligned}$$

Using Lemma 7, a third-order Taylor expansion in the numerator of (45) gives

$$ K(\hat{x}+sgn(x-\hat{x})\frac{L^{1/3}(t)\hat{\sigma }}{\sqrt{2}})-K(\hat{x},t)\le -\frac{1}{4}h^{\prime }(\hat{x})L^{2/3}(t)\hat{\sigma }^{2}=-\frac{1}{4}L^{2/3}(t), $$

which yields

$$ K(x,t)-K(\hat{x},t)\le -\frac{\sqrt{2}}{4}\frac{L^{1/3}(t)}{\hat{\sigma }}\vert x-\hat{x}\vert . $$

Using (24), we obtain for large enough fixed \(\tau \)

$$\begin{aligned} \vert \varPsi _{3}(t,\alpha )\vert&\le 2\int _{x\not \in \hat{x}+I_{t},x>\tau }\vert x-\hat{x}\vert ^{\alpha }e^{K(x,t)}dx\\&\le 2e^{K(\hat{x},t)}\int _{\vert x-\hat{x}\vert >\frac{L^{1/3} (t)\hat{\sigma }}{\sqrt{2}},x>\tau }\vert x-\hat{x}\vert ^{\alpha }\exp \left( -\frac{\sqrt{2}}{4}\frac{L^{1/3}(t)}{\hat{\sigma }}\vert x-\hat{x}\vert \right) dx\\&=2e^{K(\hat{x},t)}\hat{\sigma }^{\alpha +1}\left[ \int _{\frac{L^{1/3} (t)}{\sqrt{2}}}^{+\infty }y^{\alpha }e^{-\frac{\sqrt{2}}{4}L^{1/3}(t)y} dy \right. \\&\qquad \qquad \qquad \qquad \qquad \left. +\int _{\frac{\tau -\hat{x}}{\hat{\sigma }}}^{-\frac{L^{1/3}(t)}{\sqrt{2}} }(-y)^{\alpha }e^{\frac{\sqrt{2}}{4}L^{1/3}(t)y}dy\right] \\&:= 2e^{K(\hat{x},t)}\hat{\sigma }^{\alpha +1}(I_{\alpha }+J_{\alpha }). \end{aligned}$$

It is easy but a bit tedious to show by recursion that

$$\begin{aligned} I_{\alpha }&=\int _{\frac{L^{1/3}(t)}{\sqrt{2}}}^{+\infty }y^{\alpha } \exp \left( -\frac{\sqrt{2}}{4}L^{1/3}(t)y\right) dy\\&=\exp \left( -\frac{1}{4}L^{2/3}(t)\right) \sum _{i=0}^{\alpha }2^{\frac{4i+3-\alpha }{2}}L^{\frac{\alpha -(2i+1)}{3}}(t)\frac{\alpha !}{(\alpha -i)!}\\&\underset{t\rightarrow \infty }{\sim }2^{\frac{3-\alpha }{2}}\exp \left( -\frac{1}{4}L^{2/3}(t)\right) L^{\frac{\alpha -1}{3}}(t) \end{aligned}$$

and

$$\begin{aligned} J_{\alpha }&=\int _{\frac{\tau -\hat{x}}{\hat{\sigma }}}^{-\frac{L^{1/3} (t)}{\sqrt{2}}}(-y)^{\alpha }\exp \left( \frac{\sqrt{2}}{4}L^{1/3}(t)y\right) dy\\&=I_{\alpha }-\exp \left( \frac{\sqrt{2}}{4}L^{1/3}(t)\frac{\tau -\hat{x} }{\hat{\sigma }}\right) \sum _{i=0}^{\alpha }\left( \frac{\hat{x}-\tau }{\hat{\sigma }}\right) ^{\alpha -i}L^{-\frac{i+1}{3}}(t)2^{\frac{3i+3}{2}} \frac{\alpha !}{(\alpha -i)!}\\&=I_{\alpha }+M(t), \end{aligned}$$

with \(\hat{x}/\hat{\sigma }\in RV((1+1/\beta )/2)\) when \(h\in RV(\beta )\) and \(\hat{x}/\hat{\sigma }\in RV(1/2)\) when \(h\) is rapidly varying. Moreover, \(\tau -\hat{x}<0\), thus \(M(t)\underset{t\rightarrow \infty }{\longrightarrow }0\) and we have for some positive constant \(Q_1\)

$$ \vert \varPsi _{3}(t,\alpha )\vert \le Q_1e^{K(\hat{x},t)}\hat{\sigma }^{\alpha +1} \exp \left( -\frac{1}{4}L^{2/3}(t)\right) L^{\frac{\alpha -1}{3}}(t). $$

With (43), we obtain for some positive constant \(Q_2\)

$$ \left| \frac{\varPsi _{3}(t,\alpha )}{\varPsi _{2}(t,\alpha )}\right| \le \frac{Q_2\exp (-\frac{1}{4}L^{2/3}(t))L^{\frac{\alpha -1}{3}}(t)}{\vert T_{1}(t,\alpha )\vert }. $$

In Step 1, we saw that \(T_{1}(t,\alpha )\underset{t\rightarrow \infty }{\sim }\sqrt{2\pi }M_{\alpha }\), for \(\alpha \) even and \(T_{1}(t,\alpha )\underset{t\rightarrow \infty }{\sim }-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\sqrt{2\pi }M_{\alpha +3}\), for \(\alpha \) odd. Hence for \(\alpha \) even and \(t\) large enough

$$\begin{aligned} \left| \frac{\varPsi _{3}(t,\alpha )}{\varPsi _{2}(t,\alpha )}\right| \le Q_3\frac{\exp (-\frac{1}{4}L^{2/3}(t))L^{\frac{\alpha -1}{3}}(t)}{\sqrt{2\pi }M_{\alpha }}\underset{t\rightarrow \infty }{\longrightarrow }0, \end{aligned}$$
(46)

and for \(\alpha \) odd and \(t\) large enough

$$ \left| \frac{\varPsi _{3}(t,\alpha )}{\varPsi _{2}(t,\alpha )}\right| \le Q_4\frac{\exp (-\frac{1}{4}L^{2/3}(t))L^{\frac{\alpha -1}{3}}(t)}{\frac{\vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert }{6}\sqrt{2\pi }M_{\alpha +3}}, $$

for positive constants \(Q_3\) and \(Q_4\).

As in Lemma 7, we have

$$ \vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert \in RV\left( \frac{\theta }{\beta }+\frac{3}{2\beta }-\frac{3}{2}\right) \text{ if } h\in RV(\beta ) $$

and

$$ \vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert \in RV\left( -\frac{1}{2}\right) \text{ if } h \text{ is } \text{ rapidly } \text{ varying }. $$

Let us denote

$$ \vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert =t^{\rho }L_{1}(t), $$

for some slowly varying function \(L_{1}\) and \(\rho <0\) defined as

$$ \rho = \left\{ \begin{array}{ll} \frac{\theta }{\beta }+\frac{3}{2\beta }-\frac{3}{2} &{} \text{ if } h\in RV(\beta )\\ -\frac{1}{2} &{} \text{ if } h \text{ is } \text{ rapidly } \text{ varying } \end{array} \right. . $$

We have for some positive constant \(C\)

$$ \left| \frac{\varPsi _{3}(t,\alpha )}{\varPsi _{2}(t,\alpha )}\right| \le C\exp \left( -\frac{1}{4}L^{2/3}(t)-\rho \log t-\log L_{1}(t)\right) L^{\frac{\alpha -1}{3}}(t)\underset{t\rightarrow \infty }{\longrightarrow }0, $$

since \(-(\log t)^{2}/4-\rho \log t-\log L_{1}(t)\underset{t\rightarrow \infty }{\sim }-(\log t)^{2}/4\underset{t\rightarrow \infty }{\longrightarrow }-\infty \).

Hence we obtain

$$\begin{aligned} \varPsi _{3}(t,\alpha )\underset{t\rightarrow \infty }{=}o(\varPsi _{2}(t,\alpha )). \end{aligned}$$
(47)

The proof is completed by combining (25), (36), (43), and (47).    \(\square \)

Proof

(Proof of Theorem 1) By Lemma 9, if \(\alpha =0\), it holds

$$ T_{1}(t,0)\underset{t\rightarrow \infty }{\longrightarrow }\sqrt{2\pi }, $$

since \(L(t)\underset{t\rightarrow \infty }{\longrightarrow }\infty \). Approximate the moment generating function of \(X\)

$$\begin{aligned} \varPhi (t) =\varPsi (t,0)\underset{t\rightarrow \infty }{=}\hat{\sigma }e^{K(\hat{x},t)}T_{1}(t,0)(1+o(1))\underset{t\rightarrow \infty }{=}\sqrt{2\pi }\hat{\sigma } e^{K(\hat{x},t)}(1+o(1)). \end{aligned}$$
(48)

If \(\alpha =1\), it holds

$$ T_{1}(t,1)\underset{t\rightarrow \infty }{=}-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}M_{4}\sqrt{2\pi }(1+o(1)), $$

where \(M_{4}=3\) denotes the fourth-order moment of the standard normal distribution. Consequently, we obtain

$$\begin{aligned} \varPsi (t,1)\underset{t\rightarrow \infty }{=}-\sqrt{2\pi }\hat{\sigma } ^{2}e^{K(\hat{x},t)}\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{2} (1+o(1))\underset{t\rightarrow \infty }{=}-\varPhi (t)\frac{h^{(2)}(\hat{x} )\hat{\sigma }^{4}}{2}(1+o(1)), \end{aligned}$$
(49)

which, together with the definition of \(\varPsi (t,\alpha )\), yields

$$ \int _{0}^{\infty }xe^{tx}p(x)dx=\varPsi (t,1)+\hat{x}\varPhi (t)\underset{t\rightarrow \infty }{=}\left( \hat{x}-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}(1+o(1))\right) \varPhi (t). $$

Hence we get

$$\begin{aligned} m(t)=\frac{\int _{0}^{\infty }xe^{tx}p(x)dx}{\varPhi (t)}=\hat{x}-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}(1+o(1)). \end{aligned}$$
(50)

By Lemma 7, we obtain

$$\begin{aligned} m(t)\underset{t\rightarrow \infty }{\sim }\hat{x}=\psi (t). \end{aligned}$$
(51)

If \(\alpha =2\), it follows:

$$ T_{1}(t,2)\underset{t\rightarrow \infty }{=}\sqrt{2\pi }(1+o(1)). $$

Thus we have

$$\begin{aligned} \varPsi (t,2)\underset{t\rightarrow \infty }{=}\hat{\sigma }^{2}\varPhi (t)(1+o(1)). \end{aligned}$$
(52)

Using (49), (50) and (52), it follows:

$$\begin{aligned}&\int _{0}^{\infty }(x-m(t))^{2}e^{tx}p(x)dx=\int _{0}^{\infty }(x-\hat{x} +\hat{x}-m(t))^{2}e^{tx}p(x)dx\\&=\varPsi (t,2)+2(\hat{x}-m(t))\varPsi (t,1)+(\hat{x}-m(t))^{2}\varPhi (t)\\&\underset{t\rightarrow \infty }{=}\hat{\sigma }^{2}\varPhi (t)(1+o(1))-\hat{\sigma }^{2}\varPhi (t)\frac{(h^{(2)}(\hat{x})\hat{\sigma }^{3})^{2}}{4}(1+o(1))\underset{t\rightarrow \infty }{=}\hat{\sigma }^{2}\varPhi (t)(1+o(1)), \end{aligned}$$

where the last equality holds since \(\vert h^{(2)}(\hat{x})\hat{\sigma }^{3}\vert \underset{t\rightarrow \infty }{\longrightarrow }0\) by Lemma 7.

Hence we obtain

$$\begin{aligned} s^{2}(t)=\frac{\int _{0}^{\infty }(x-m(t))^{2}e^{tx}p(x)dx}{\varPhi (t)}\underset{t\rightarrow \infty }{\sim }\hat{\sigma }^{2}=\psi ^{\prime }(t). \end{aligned}$$
(53)

If \(\alpha =3\), it holds

$$ T_{1}(t,3)=-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{6}e^{-\frac{y^{2}}{2}}dy. $$

Thus we have

$$\begin{aligned} \varPsi (t,3)&=-\sqrt{2\pi }\hat{\sigma }^{4}e^{K(\hat{x},t)}\frac{h^{(2)} (\hat{x})\hat{\sigma }^{3}}{6}\int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}} }^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}\frac{1}{\sqrt{2\pi }}y^{6} e^{-\frac{y^{2}}{2}}dy\\&\underset{t\rightarrow \infty }{=}-M_{6}\frac{h^{(2)}(\hat{x})\hat{\sigma }^{6}}{6}\varPhi (t)(1+o(1)),\nonumber \end{aligned}$$
(54)

where \(M_{6}=15\) denotes the sixth-order moment of standard normal distribution. Using (49), (50), (52) and (54), we have

$$\begin{aligned}&\int _{0}^{\infty }(x-m(t))^{3}e^{tx}p(x)dx=\int _{0}^{\infty }(x-\hat{x}+\hat{x}-m(t))^{3}e^{tx}p(x)dx\\&=\varPsi (t,3)+3(\hat{x}-m(t))\varPsi (t,2)+3(\hat{x}-m(t))^{2}\varPsi (t,1)+(\hat{x}-m(t))^{3}\varPhi (t)\\&\underset{t\rightarrow \infty }{=}-h^{(2)}(\hat{x})\hat{\sigma }^{6}\varPhi (t)(1+o(1))-h^{(2)}(\hat{x})\hat{\sigma }^{6}\varPhi (t)\frac{(h^{(2)}(\hat{x})\hat{\sigma }^{3})^{2}}{4}(1+o(1))\\&\underset{t\rightarrow \infty }{=}-h^{(2)}(\hat{x})\hat{\sigma }^{6}\varPhi (t)(1+o(1)), \end{aligned}$$

where the last equality holds since \(|h^{(2)}(\hat{x})\hat{\sigma }^{3}|\underset{t\rightarrow \infty }{\longrightarrow }0\) by Lemma 7. Hence we get

$$\begin{aligned} \mu _{3}(t)&=\frac{\int _{0}^{\infty }(x-m(t))^{3}e^{tx}p(x)dx}{\varPhi (t)}\underset{t\rightarrow \infty }{\sim }-h^{(2)}(\hat{x})\hat{\sigma }^{6} \nonumber \\&=\frac{\psi ^{(2)}(t)}{(\psi ^{\prime }(t))^{3}}(\psi ^{\prime }(t))^{3}=\psi ^{(2)}(t). \end{aligned}$$
(55)

We now consider \(\alpha =j>3\) for even \(j\). Using (50) and Lemma 9, we have

$$\begin{aligned}&\int _{0}^{\infty }(x-m(t))^{j}e^{tx}p(x)dx=\int _{0}^{\infty }(x-\hat{x}+\hat{x}-m(t))^{j}e^{tx}p(x)dx\\&=\sum _{i=0}^{j}\left( {\begin{array}{c}j\\ i\end{array}}\right) \left( \frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}\right) ^{i}\hat{\sigma }^{j-i+1}e^{K(\hat{x},t)}T_{1}(t,j-i)(1+o(1)),\nonumber \end{aligned}$$
(56)

with

$$\begin{aligned} T_{1}(t,j-i)&=\left\{ \begin{array}{ll} \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{j-i}e^{-\frac{y^{2}}{2}}dy &{} \text{ for } \text{ even } i\\ -\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\int _{-\frac{L^{\frac{1}{3}} (t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{3+j-i}e^{-\frac{y^{2}}{2}}dy &{} \text{ for } \text{ odd } i \end{array} \right. \\&\underset{t\rightarrow \infty }{=}\left\{ \begin{array}{ll} \sqrt{2\pi }M_{j-i}(1+o(1)) &{} \text{ if } i \text{ is } \text{ even }\\ -\sqrt{2\pi }\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}M_{3+j-i} &{}\text{ if } i \text{ is } \text{ odd } \end{array} \right. . \end{aligned}$$

Using (48), we obtain

$$\begin{aligned}&\int _{0}^{\infty }(x-m(t))^{j}e^{tx}p(x)dx\\&\underset{t\rightarrow \infty }{=}\sum _{i=0}^{j}\left( {\begin{array}{c}j\\ i\end{array}}\right) \left( \frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}\right) ^{i}\varPhi (t)\times \\&\quad \left[ \hat{\sigma }^{j-i}M_{j-i}(1+o(1))\mathbb {I} _{even~i}-\frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}\sigma ^{j-i-1} \frac{M_{3+j-i}}{3}(1+o(1))\mathbb {I}_{odd~i}\right] \\&\underset{t\rightarrow \infty }{=}\sum _{k=0}^{j/2}\left( {\begin{array}{c}j\\ 2k\end{array}}\right) \left( \frac{h^{(2)}(\hat{x})\hat{\sigma }^{4}}{2}\right) ^{2k}\varPhi (t)\hat{\sigma }^{j-2k}M_{j-2k}(1+o(1))\\&\quad -\sum _{k=0}^{j/2-1}\left( {\begin{array}{c}j\\ 2k+1\end{array}}\right) \left( \frac{h^{(2)} (\hat{x})\hat{\sigma }^{4}}{2}\right) ^{2(k+1)}\varPhi (t)\hat{\sigma } ^{j-2k-2}\frac{M_{3+j-2k-1}}{3}(1+o(1))\\&\underset{t\rightarrow \infty }{\sim }\hat{\sigma }^{j}\varPhi (t)\times \\&\left( M_{j}+\sum _{k=1}^{j/2}\left( {\begin{array}{c}j\\ 2k\end{array}}\right) (h^{(2)}(\hat{x})\hat{\sigma }^{3})^{2k}\frac{M_{j-2k}}{2^{2k}} \right. \\&\quad \left. -\sum _{k=0}^{j/2-1}\left( {\begin{array}{c}j\\ 2k+1\end{array}}\right) (h^{(2)}(\hat{x})\hat{\sigma }^{3})^{2(k+1)}\frac{M_{3+j-2k-1}}{3\times 2^{2(k+1)}}\right) \\&\underset{t\rightarrow \infty }{=}M_{j}\hat{\sigma }^{j}\varPhi (t)(1+o(1)), \end{aligned}$$

since \(|h^{(2)}(\hat{x})\hat{\sigma }^{3}|\underset{t\rightarrow \infty }{\longrightarrow }0\) by Lemma 7. Hence we get for even \(j\)

$$\begin{aligned} \mu _{j}(t) =\frac{\int _{0}^{\infty }(x-m(t))^{j}e^{tx}p(x)dx}{\varPhi (t)}\underset{t\rightarrow \infty }{\sim }M_{j}\hat{\sigma }^{j}\underset{t\rightarrow \infty }{\sim }M_{j}s^{j}(t), \end{aligned}$$
(57)

by (53).

To conclude, we consider \(\alpha =j>3\) for odd \(j\). (56) holds true with

$$\begin{aligned} T_{1}(t,j-i)&=\left\{ \begin{array}{ll} \int _{-\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{j-i}e^{-\frac{y^{2}}{2}}dy &{} \text{ for } \text{ odd } i\\ -\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}\int _{-\frac{L^{\frac{1}{3}} (t)}{\sqrt{2}}}^{\frac{L^{\frac{1}{3}}(t)}{\sqrt{2}}}y^{3+j-i}e^{-\frac{y^{2}}{2}}dy &{} \text{ for } \text{ even } i \end{array} \right. \\&\underset{t\rightarrow \infty }{=}\left\{ \begin{array}{ll} \sqrt{2\pi }M_{j-i}(1+o(1)) &{} \text{ if } i \text{ is } \text{ odd }\\ -\sqrt{2\pi }\frac{h^{(2)}(\hat{x})\hat{\sigma }^{3}}{6}M_{3+j-i} &{}\text{ if } i \text{ is } \text{ even } \end{array} \right. . \end{aligned}$$

Thus, with the same tools as above, some calculus and making use of (57),

$$ \int _{0}^{\infty }(x-m(t))^{j}e^{tx}p(x)dx\underset{t\rightarrow \infty }{=} \frac{M_{j+3}-3jM_{j-1}}{6}\times (-h^{(2)}(\hat{x})\hat{\sigma }^{j+3})\varPhi (t). $$

Hence we get for odd \(j\)

$$\begin{aligned} \mu _{j}(t)&=\frac{\int _{0}^{\infty }(x-m(t))^{j}e^{tx}p(x)dx}{\varPhi (t)}\underset{t\rightarrow \infty }{\sim }\frac{M_{j+3}-3jM_{j-1}}{6}\times (-h^{(2)}(\hat{x})\hat{\sigma }^{j+3})\\&\underset{t\rightarrow \infty }{\sim }\frac{M_{j+3}-3jM_{j-1}}{6}\mu _{3}(t)s^{j-3}(t),\nonumber \end{aligned}$$
(58)

by (53) and (55).

The proof is complete by considering (51), (53), (55), (57) and (58).    \(\square \)

Proof

(Proof of Theorem 2) It is proved incidentally in (48).    \(\square \)

Proof

(Proof of Theorem 3) Consider the moment generating function of the random variable

$$ Y_{t}:=\frac{\fancyscript{X}_{t}-m(t)}{s(t)}. $$

It holds for any \(\lambda \)

$$\begin{aligned} \log E\exp \lambda Y_{t}&=-\lambda \frac{m(t)}{s(t)}+\log \frac{\varPhi \left( t+\frac{\lambda }{s(t)}\right) }{\varPhi (t)}\\&=\frac{\lambda ^2}{2}\frac{s^{2}\left( t+\theta \frac{\lambda }{s(t)}\right) }{s^{2}(t)}=\frac{\lambda ^2}{2}\frac{\psi ^{\prime }\left( t+\theta \frac{\lambda \left( 1+o(1)\right) }{\sqrt{\psi ^{\prime }(t)}}\right) }{\psi ^{\prime }(t)}\left( 1+o(1)\right) \end{aligned}$$

as \(t\rightarrow \infty ,\) for some \(\theta \in \left( 0,1\right) \) depending on \(t\), where we used Theorem 1. Now making use of Corollaries 2 and 3 it follows that

$$ \lim _{t\rightarrow \infty }\log E\exp \lambda Y_{t}=\frac{\lambda ^2}{2}, $$

which proves the claim.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biret, M., Broniatowski, M., Cao, Z. (2015). A Sharp Abelian Theorem for the Laplace Transform. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds) Mathematical Statistics and Limit Theorems. Springer, Cham. https://doi.org/10.1007/978-3-319-12442-1_5

Download citation

Publish with us

Policies and ethics