Skip to main content

Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Abstract

The difficulty in defining standard benchmarks for human likeness is a well-known problem in bipedal robotics. This paper proposes the conceptual design of a novel benchmarking scheme for bipedal robots based on existing criteria and benchmarks related to the sensorimotor mechanisms involved in human walking and posture. The proposed scheme aims to be sufficiently generic to permit its application to a wide range of bipedal platforms, and sufficiently specific to rigorously test the sensorimotor skills found in humans.

The achievement of global consensus on the definition of human likeness has a crucial importance not only in the field of humanoid robotics, but also in neuroscience and clinical settings. The EU project H2R is specifically dealing with this problem. A preliminary solution is here given to encourage the international discussion on this topic within the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behnke, S.: Robot Competitions Ideal Benchmarks for Robotics Research. In: IROS 2006 - Workshop on Benchmarks in Robotics Research (2006)

    Google Scholar 

  2. del Pôbil, P.: A.: Why do We Need Benchmarks in Robotics Research? In: IROS2006 - Workshop on Benchmarks in Robotics Research (2006)

    Google Scholar 

  3. DARPA Robotics Challenge Trials (DRC), http://www.theroboticschallenge.org/

  4. Rahman, S.M.M.: Evaluating and Benchmarking the Interactions between a Humanoid Robot and a Virtual Human for a Real-World Social Task. In: Papasratorn, B., Charoenkitkarn, N., Vanijja, V., Chongsuphajaisiddhi, V. (eds.) IAIT 2013. CCIS, vol. 409, pp. 184–197. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  6. H2R, Integrative approach for the emergence of human-like locomotion, FP7-ICT-2011-9 Agreement no60069, http://www.h2rproject.eu

  7. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)

    Google Scholar 

  8. Mergner, T., Schweigart, G., Fennell, L.: Vestibular humanoid postural control. J. Physiol. Paris 103, 178–194 (2009)

    Article  Google Scholar 

  9. Winter, D.A.: Biomechanics and motor control of human gait: normal, elderly and pathological (1991)

    Google Scholar 

  10. Ishida, A., Imai, S., Fukuoka, Y.: Analysis of the posture control system under fixed and sway-referenced support conditions. IEEE Trans. Biomed. Eng. 44, 331–336 (1997)

    Article  Google Scholar 

  11. Cheng, P.-T., Wang, C.-M., Chung, C.-Y., Chen, C.-L.: Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clin. Rehabil. 18, 747–753 (2004)

    Article  Google Scholar 

  12. Wallmann, H.W.: Comparison of elderly nonfallers and fallers on performance measures of functional reach, sensory organization, and limits of stability. J. Gerontol. A. Biol. Sci. Med. Sci. 56, M580–M583 (2001)

    Google Scholar 

  13. Horak, F., Macpherson, J.: Postural orientation and equilibrium. Compr. Physiol. (1996)

    Google Scholar 

  14. Messuri, D., Klein, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE J. Robot. Autom. 1 (1985)

    Google Scholar 

  15. Lin, B.-S., Song, S.-M.: Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In: Proc. IEEE Int. Conf. Robot. Autom. (1993)

    Google Scholar 

  16. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proc. 2001 ICRA. IEEE Int. Conf. Robot. Autom (Cat. No.01CH37164), vol. 1 (2001)

    Google Scholar 

  17. Goodworth, A.D., Peterka, R.J.: Contribution of sensorimotor integration to spinal stabilization in humans. J. Neurophysiol. 102, 496–512 (2009)

    Article  Google Scholar 

  18. Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2, 371–387 (2002)

    Article  Google Scholar 

  19. Schweigart, G., Mergner, T.: Human stance control beyond steady state response and inverted pendulum simplification. Exp. Brain Res. 185, 635–653 (2008)

    Article  Google Scholar 

  20. Miles-Chan, J.L., Sarafian, D., Montani, J.-P., Schutz, Y., Dulloo, A.: Heterogeneity in the energy cost of posture maintenance during standing relative to sitting: phenotyping according to magnitude and time-course. PLoS One 8, e65827 (2013)

    Google Scholar 

  21. Bernstein, N.A.: Dexterity and its development (1996)

    Google Scholar 

  22. Iosa, M., Fusco, A., Marchetti, F., Morone, G., Caltagirone, C., Paolucci, S., Peppe, A.: The golden ratio of gait harmony: repetitive proportions of repetitive gait phases. Biomed Res. Int. 2013, 918642 (2013)

    Article  Google Scholar 

  23. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recognit. 42, 2169–2180 (2009)

    Article  MATH  Google Scholar 

  24. Perry, J.: Gait analysis: normal and pathological function. SLACK Inc. (1992)

    Google Scholar 

  25. Hansen, A.H., Childress, D.S., Knox, E.H.: Roll-over shapes of human locomotor systems: effects of walking speed. Clin. Biomech. 19, 407–414 (2004)

    Article  Google Scholar 

  26. Alexander, R.M.: The Gaits of Bipedal and Quadrupedal Animals. Int. J. Rob. Res. 3, 49–59 (1984)

    Article  Google Scholar 

  27. Duncan, W.J.: Physical similarity and dimensional analysis, London (1957)

    Google Scholar 

  28. Mummolo, C., Kim, J.H.: Passive and dynamic gait measures for biped mechanism: formulation and simulation analysis. Robotica 31, 555–572 (2012)

    Article  Google Scholar 

  29. Gabrielli, G., von Kármán, T.: What price speed? Specific power required for propulsion of vehicles. Mech. Eng. ASME 72, 775–781 (1950)

    Google Scholar 

  30. Dermitzakis, K., Carbajal, J.P., Marden, J.H.: Scaling laws in robotics. Procedia Computer Science, 250–252 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Torricelli, D. et al. (2014). Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics