Skip to main content

18 Causes and Diagnosis of Aseptic Loosening After Total Knee Replacement

  • Chapter
The Unhappy Total Knee Replacement

Abstract

Aseptic loosening after TKR is the most common cause of late failure and revision. The main culprit of aseptic loosening is increased wear of early generation polyethylene, especially in thin and low-conformity inserts, associated with some implant designs such as discontinuous porous-coating cementless components. Additionally, surgical factors such as malalignment, malposition, and uncorrected instability may contribute to aseptic loosening. It is crucial to maintain the integrity of the implant-bone interface to avoid debris penetration into the bone. Counseling of patients at risk, particularly young and active individuals with elevated body mass index, should play a role on the prevention of this condition. When aseptic loosening is the cause of an unsatisfactory outcome and warrants revision, a detailed history, physical exam, and additional test should be obtained thoroughly to avoid misdiagnosis and adverse revision results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487–97.

    Article  PubMed  Google Scholar 

  2. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  3. Bare J, MacDonald SJ, Bourne RB. Preoperative evaluations in revision total knee arthroplasty. Clin Orthop Relat Res. 2006;446:40–4.

    Article  PubMed  Google Scholar 

  4. Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ. Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res. 2006;446:45–50.

    Article  PubMed  Google Scholar 

  5. Ezzet KA, Garcia R, Barrack RL. Effect of component fixation method on osteolysis in total knee arthroplasty. Clin Orthop Relat Res. 1995;321:86–91.

    PubMed  Google Scholar 

  6. Whiteside LA. Effect of porous-coating configuration on tibial osteolysis after total knee arthroplasty. Clin Orthop Relat Res. 1995;321:92–7.

    PubMed  Google Scholar 

  7. Naudie DD, Ammeen DJ, Engh GA, Rorabeck CH. Wear and osteolysis around total knee arthroplasty. J Am Acad Orthop Surg. 2007;15(1):53–64.

    PubMed  Google Scholar 

  8. Odland AN, Callaghan JJ, Liu SS, Wells CW. Wear and lysis is the problem in modular TKA in the young OA patient at 10 years. Clin Orthop Relat Res. 2011;469(1):41–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fehring TK, Murphy JA, Hayes TD, Roberts DW, Pomeroy DL, Griffin WL. Factors influencing wear and osteolysis in press-fit condylar modular total knee replacements. Clin Orthop Relat Res. 2004;428:40–50.

    Article  PubMed  Google Scholar 

  10. Hariri DM, Maloney WJ, Rubash HE. Osteolysis in total knee arthroplasty. In: Barrack RL, Booth RE, Lonner JH, McCarthy JC, Mont MA, Rubash HE, editors. OKU hip and knee reconstruction. Rosemont: American Academy of Orthopaedic Surgeons; 2006.

    Google Scholar 

  11. Berend ME, Ritter MA, Hyldahl HC, Meding JB, Redelman R. Implant migration and failure in total knee arthroplasty is related to body mass index and tibial component size. J Arthroplasty. 2008;23(6 Suppl 1):104–9.

    Article  PubMed  Google Scholar 

  12. Collier JP, Mayor MB, McNamara JL, Surprenant VA, Jensen RE. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin Orthop Relat Res. 1991;273:232–42.

    PubMed  Google Scholar 

  13. Akisue T, Yamaguchi M, Bauer TW, Takikawa S, Schils JP, Yoshiya S, et al. “Backside” polyethylene deformation in total knee arthroplasty. J Arthroplasty. 2003;18(6):784–91.

    Article  PubMed  Google Scholar 

  14. Goodman S. Wear particulate and osteolysis. Orthop Clin North Am. 2005;36(1):41–8.

    Article  PubMed  Google Scholar 

  15. Peters Jr PC, Engh GA, Dwyer KA, Vinh TN. Osteolysis after total knee arthroplasty without cement. J Bone Joint Surg. 1992;74(6):864–76.

    PubMed  Google Scholar 

  16. Berzins A, Jacobs JJ, Berger R, Ed C, Natarajan R, Andriacchi T, Galante JO. Surface damage in machined ram-extruded and net-shape molded retrieved polyethylene tibial inserts of total knee replacements. J Bone Joint Surg Am. 2002;84-A(9):1534–40.

    PubMed  Google Scholar 

  17. Engh GA, Dwyer KA, Hanes CK. Polyethylene wear of metal-backed tibial components in total and unicompartmental knee prostheses. J Bone Joint Surg (Br). 1992;74(1):9–17.

    CAS  Google Scholar 

  18. Huang CH, Ho FY, Ma HM, Yang CT, Liau JJ, Kao HC, Young TH, Cheng CK. Particle size and morphology of UHMWPE wear debris in failed total knee arthroplasties – a comparison between mobile bearing and fixed bearing knees. J Orthop Res. 2002;20(5):1038–41.

    Article  CAS  PubMed  Google Scholar 

  19. Surace MF, Berzins A, Urban RM, Jacobs JJ, Berger RA, Natarajan RN, Andriacchi TP, Galante JO. Coventry Award paper. Backsurface wear and deformation in polyethylene tibial inserts retrieved postmortem. Clin Orthop Relat Res. 2002;404:14–23.

    Article  PubMed  Google Scholar 

  20. Rao AR, Engh GA, Collier MB, Lounici S. Tibial interface wear in retrieved total knee components and correlations with modular insert motion. J Bone Joint Surg Am. 2002;84-A(10):1849–55.

    PubMed  Google Scholar 

  21. Pagnano MW, Levy BA, Berry DJ. Cemented all polyethylene tibial components in patients age 75 years and older. Clin Orthop Relat Res. 1999;367:73–80.

    PubMed  Google Scholar 

  22. Voigt J, Mosier M. Cemented all-polyethylene and metal-backed polyethylene tibial components used for primary total knee arthroplasty: a systematic review of the literature and meta-analysis of randomized controlled trials involving 1798 primary total knee implants. J Bone Joint Surg Am. 2011;93(19):1790–8.

    Article  PubMed  Google Scholar 

  23. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS. Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am. 2003;85-A(2):259–65.

    PubMed  Google Scholar 

  24. Mikulak SA, Mahoney OM, dela Rosa MA, Schmalzried TP. Loosening and osteolysis with the press-fit condylar posterior-cruciate-substituting total knee replacement. J Bone Joint Surg Am. 2001;83-A(3):398–403.

    CAS  PubMed  Google Scholar 

  25. Engh GA, Parks NL, Ammeen DJ. Tibial osteolysis in cementless total knee arthroplasty. A review of 25 cases treated with and without tibial component revision. Clin Orthop Relat Res. 1994;309:33–43.

    PubMed  Google Scholar 

  26. Schmalzried TP, Callaghan JJ. Wear in total hip and knee replacements. J Bone Joint Surg Am. 1999;81(1):115–36.

    CAS  PubMed  Google Scholar 

  27. Chiba J, Schwendeman LJ, Booth Jr RE, Crossett LS, Rubash HE. A biochemical, histologic, and immunohistologic analysis of membranes obtained from failed cemented and cementless total knee arthroplasty. Clin Orthop Relat Res. 1994;299:114–24.

    PubMed  Google Scholar 

  28. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994;299:31–43.

    PubMed  Google Scholar 

  29. Marshall A, Ries MD, Paprosky W. How prevalent are implant wear and osteolysis, and how has the scope of osteolysis changed since 2000? J Am Acad Orthop Surg. 2008;16 Suppl 1:S1–6.

    PubMed  Google Scholar 

  30. Bohl JR, Bohl WR, Postak PD, Greenwald AS. The Coventry Award. The effects of shelf life on clinical outcome for gamma sterilized polyethylene tibial components. Clin Orthop Relat Res. 1999;367:28–38.

    Article  PubMed  Google Scholar 

  31. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH, Gul R, McGarry F. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials. 1999;20(16):1463–70.

    Article  CAS  PubMed  Google Scholar 

  32. Crowninshield RD, Muratoglu OK. How have new sterilization techniques and new forms of polyethylene influenced wear in total joint replacement? J Am Acad Orthop Surg. 2008;16 Suppl 1:S80–5.

    PubMed  Google Scholar 

  33. Wang A, Yau SS, Essner A, Herrera L, Manley M, Dumbleton J. A highly crosslinked UHMWPE for CR and PS total knee arthroplasties. J Arthroplasty. 2008;23(4):559–66.

    Article  PubMed  Google Scholar 

  34. Haider H, Weisenburger JN, Kurtz SM, Rimnac CM, Freedman J, Schroeder DW, Garvin KL. Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty? J Arthroplasty. 2012;27(3):461–9.

    Article  PubMed  Google Scholar 

  35. Ries MD, Bellare A, Livingston BJ, Cohen RE, Spector M. Early delamination of a Hylamer-M tibial insert. J Arthroplasty. 1996;11(8):974–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lachiewicz PF, Geyer MR. The use of highly cross-linked polyethylene in total knee arthroplasty. J Am Acad Orthop Surg. 2011;19(3):143–51.

    PubMed  Google Scholar 

  37. Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am. 1986;68(7):1041–51.

    CAS  PubMed  Google Scholar 

  38. Kuster MS, Horz S, Spalinger E, Stachowiak GW, Gachter A. The effects of conformity and load in total knee replacement. Clin Orthop Relat Res. 2000;375:302–12.

    Article  PubMed  Google Scholar 

  39. Buechel Sr FF. Long-term followup after mobile-bearing total knee replacement. Clin Orthop Relat Res. 2002;404:40–50.

    Article  PubMed  Google Scholar 

  40. Huang CH, Ma HM, Liau JJ, Ho FY, Cheng CK. Osteolysis in failed total knee arthroplasty: a comparison of mobile-bearing and fixed-bearing knees. J Bone Joint Surg Am. 2002;84-A(12):2224–9.

    PubMed  Google Scholar 

  41. Ward WG, Johnston KS, Dorey FJ, Eckardt JJ. Extramedullary porous coating to prevent diaphyseal osteolysis and radiolucent lines around proximal tibial replacements. A preliminary report. J Bone Joint Surg Am. 1993;75(7):976–87.

    CAS  PubMed  Google Scholar 

  42. Benjamin J, Szivek J, Dersam G, Persselin S, Johnson R. Linear and volumetric wear of tibial inserts in posterior cruciate-retaining knee arthroplasties. Clin Orthop Relat Res. 2001;392:131–8.

    Article  PubMed  Google Scholar 

  43. Ryd L, Albrektsson BE, Herberts P, Lindstrand A, Selvik G. Micromotion of noncemented Freeman-Samuelson knee prostheses in gonarthrosis. A roentgen-stereophotogrammetric analysis of eight successful cases. Clin Orthop Relat Res. 1988;229:205–12.

    PubMed  Google Scholar 

  44. Cook SD, Barrack RL, Thomas KA, Haddad Jr RJ. Quantitative histologic analysis of tissue growth into porous total knee components. J Arthroplasty. 1989;4(Suppl):S33–43.

    Article  PubMed  Google Scholar 

  45. Harrison AK, Gioe TJ, Simonelli C, Tatman PJ, Schoeller MC. Do porous tantalum implants help preserve bone?: evaluation of tibial bone density surrounding tantalum tibial implants in TKA. Clin Orthop Relat Res. 2010;468(10):2739–45.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Thelu CE, Pasquier G, Maynou C, Migaud H. Poor results of the Optetrak cemented posterior stabilized knee prosthesis after a mean 25-month follow-up: analysis of 110 prostheses. Orthop Traumatol Surg Res. 2012;98(4):413–20.

    Article  PubMed  Google Scholar 

  47. Seitz P, Ruegsegger P, Gschwend N, Dubs L. Changes in local bone density after knee arthroplasty. The use of quantitative computed tomography. J Bone Joint Surg Br. 1987;69(3):407–11.

    CAS  PubMed  Google Scholar 

  48. Toksvig-Larsen S, Ryd L, Lindstrand A. Early inducible displacement of tibial components in total knee prostheses inserted with and without cement: a randomized study with roentgen stereophotogrammetric analysis. J Bone Joint Surg Am. 1998;80(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hvid I. Trabecular bone strength at the knee. Clin Orthop Relat Res. 1988;227:210–21.

    CAS  PubMed  Google Scholar 

  50. Walker PS, Soudry M, Ewald FC, McVickar H. Control of cement penetration in total knee arthroplasty. Clin Orthop Relat Res. 1984;185:155–64.

    PubMed  Google Scholar 

  51. Gonzalez MH, Mekhail AO. The failed total knee arthroplasty: evaluation and etiology. J Am Acad Orthop Surg. 2004;12(6):436–46.

    PubMed  Google Scholar 

  52. King TV, Scott RD. Femoral component loosening in total knee arthroplasty. Clin Orthop Relat Res. 1985;194:285–90.

    PubMed  Google Scholar 

  53. Rath NK, Dudhniwala AG, White SP, Forster MC. Aseptic loosening of the patellar component at the cement-implant interface. Knee. 2011;19(6):823–6.

    Article  PubMed  Google Scholar 

  54. Barnes CL, Scott RD. Patellofemoral complications of total knee replacement. Instr Course Lect. 1993;42:303–7.

    CAS  PubMed  Google Scholar 

  55. Collier MB, Engh Jr CA, McAuley JP, Engh GA. Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am. 2007;89(6):1306–14.

    Article  PubMed  Google Scholar 

  56. Johnson F, Leitl S, Waugh W. The distribution of load across the knee. A comparison of static and dynamic measurements. J Bone Joint Surg (Br). 1980;62(3):346–9.

    CAS  Google Scholar 

  57. Dorr LD, Boiardo RA. Technical considerations in total knee arthroplasty. Clin Orthop Relat Res. 1986;205:5–11.

    PubMed  Google Scholar 

  58. Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res. 1990;255:215–27.

    PubMed  Google Scholar 

  59. Dorr LDS, Serocki JH. Mechanism of failure of total knee arthroplasty. In: Scott WN, editor. The knee. St. Louis: Mosby; 1994.

    Google Scholar 

  60. Vince KG, Insall JN, Kelly MA. The total condylar prosthesis. 10- to 12-year results of a cemented knee replacement. J Bone Joint Surg (Br). 1989;71(5):793–7.

    CAS  Google Scholar 

  61. Hsu HP, Garg A, Walker PS, Spector M, Ewald FC. Effect of knee component alignment on tibial load distribution with clinical correlation. Clin Orthop Relat Res. 1989;248:135–44.

    PubMed  Google Scholar 

  62. Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am. 2010;92(12):2143–9.

    Article  PubMed  Google Scholar 

  63. Lewis P, Rorabeck CH, Bourne RB, Devane P. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop Relat Res. 1994;299:11–7.

    PubMed  Google Scholar 

  64. Verlinden C, Uvin P, Labey L, Luyckx JP, Bellemans J, Vandenneucker H. The influence of malrotation of the femoral component in total knee replacement on the mechanics of patellofemoral contact during gait: an in vitro biomechanical study. J Bone Joint Surg (Br). 2010;92(5):737–42.

    Article  CAS  Google Scholar 

  65. Pagnano MW, Hanssen AD, Lewallen DG, Stuart MJ. Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clin Orthop Relat Res. 1998;356:39–46.

    Article  PubMed  Google Scholar 

  66. Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am. 2001;83-A(3):390–7.

    CAS  PubMed  Google Scholar 

  67. Mont MA, Serna FK, Krackow KA, Hungerford DS. Exploration of radiographically normal total knee replacements for unexplained pain. Clin Orthop Relat Res. 1996;331:216–20.

    Article  PubMed  Google Scholar 

  68. Lonner JH, Fehring TK, Hanssen AD, Pellegrini Jr VD, Padgett DE, Wright TM, et al. Revision total knee arthroplasty: the preoperative evaluation. J Bone Joint Surg Am. 2009;91 Suppl 5:64–8.

    Article  PubMed  Google Scholar 

  69. Windsor RE, Scuderi GR, Moran MC, Insall JN. Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Relat Res. 1989;248:15–9; discussion 9–20.

    PubMed  Google Scholar 

  70. Bayley JC, Scott RD, Ewald FC, Holmes Jr GB.Failure of the metal-backed patellar component after total knee replacement. J Bone Joint Surg Am. 1988;70(5):668–74.

    CAS  PubMed  Google Scholar 

  71. Berger RA, Lyon JH, Jacobs JJ, Barden RM, Berkson EM, Sheinkop MB, et al. Problems with cementless total knee arthroplasty at 11 years followup. Clin Orthop Relat Res. 2001;392:196–207.

    Article  PubMed  Google Scholar 

  72. Ecker ML, Lotke PA, Windsor RE, Cella JP. Long-term results after total condylar knee arthroplasty. Significance of radiolucent lines. Clin Orthop Relat Res. 1987;216:151–8.

    PubMed  Google Scholar 

  73. Fehring TK, McAvoy G. Fluoroscopic evaluation of the painful total knee arthroplasty. Clin Orthop Relat Res. 1996;331:226–33.

    Article  PubMed  Google Scholar 

  74. Smith S, Naima VS, Freeman MA. The natural history of tibial radiolucent lines in a proximally cemented stemmed total knee arthroplasty. J Arthroplasty. 1999;14(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  75. Sofka CM, Potter HG, Figgie M, Laskin R. Magnetic resonance imaging of total knee arthroplasty. Clin Orthop Relat Res. 2003;406:129–35.

    Article  PubMed  Google Scholar 

  76. Kretzer JP, Jakubowitz E, Reinders J, Lietz E, Moradi B, Hofmann K, Sonntag R. Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Acta Biomater. 2011;7:710–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Higuera MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Higuera, C., Parvizi, J. (2015). 18 Causes and Diagnosis of Aseptic Loosening After Total Knee Replacement. In: Hirschmann, M., Becker, R. (eds) The Unhappy Total Knee Replacement. Springer, Cham. https://doi.org/10.1007/978-3-319-08099-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08099-4_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08098-7

  • Online ISBN: 978-3-319-08099-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics