Skip to main content

Basic Principles of Muscle Healing

  • Chapter
  • First Online:
Acute Muscle Injuries

Abstract

Skeletal muscle has the ability to regenerate following injury, and this response implicates a specific type of resident muscle stem cell, the satellite cell. Three main phases have been identified in the process of muscle regeneration, including (I) a destruction phase with the initial inflammatory response, (II) a repair phase with the activation of satellite cells, and (III) a remodeling phase with the maturation of the regenerated myofibers. Nevertheless, in severe muscle injuries, we also observed the formation of fibrosis that impairs muscle function. Various strategies, including the use of growth factors, transplantation of muscle stem cells, or antifibrotic therapies, may become therapeutic alternatives to improve functional recovery after severe muscle injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol. 1989;138(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  2. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002;157(1):137–48.

    Article  CAS  PubMed  Google Scholar 

  3. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A. 1998;95(26):15603–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bedair HS, Karthikeyan T, Quintero A, Li Y, Huard J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med. 2008;36(8):1548–54.

    Article  PubMed  Google Scholar 

  5. Berg U, Bang P. Exercise and circulating insulin-like growth factor I. Horm Res. 2004;62 Suppl 1:50–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R. Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest. 1995;96(2):1137–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CW, Corselli M, Peault B, Huard J. Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol. 2012;2012:597439.

    PubMed Central  PubMed  Google Scholar 

  9. Crisan M, Huard J, Zheng B, Sun B, Yap S, Logar A, Giacobino JP, Casteilla L, Peault B. Purification and culture of human blood vessel-associated progenitor cells. Curr Protoc Stem Cell Biol. 2008;Chapter 2:Unit 2B.2.1–2B.2.13.

    Google Scholar 

  10. Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM. A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med. 1994;22(5):702–10.

    Article  CAS  PubMed  Google Scholar 

  11. Damon SE, Haugk KL, Birnbaum RS, Quinn LS. Retrovirally mediated overexpression of insulin-like growth factor binding protein 4: evidence that insulin-like growth factor is required for skeletal muscle differentiation. J Cell Physiol. 1998;175(1):109–20.

    Article  CAS  PubMed  Google Scholar 

  12. Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J. Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell. 2005;16(7):3323–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 1996;135(2):431–40.

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J. The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med. 2001;29(4):394–402.

    CAS  PubMed  Google Scholar 

  15. Garrett Jr WE. Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc. 1990;22(4):436–43.

    PubMed  Google Scholar 

  16. Grounds MD. Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol. 1999;12(5):535–43.

    Article  CAS  PubMed  Google Scholar 

  17. Huard J, Bouchard JP, Roy R, Malouin F, Dansereau G, Labrecque C, Albert N, Richards CL, Lemieux B, Tremblay JP. Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve. 1992;15(5):550–60.

    Article  CAS  PubMed  Google Scholar 

  18. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-A(5):822–32.

    PubMed  Google Scholar 

  19. Hurme T, Kalimo H. Activation of myogenic precursor cells after muscle injury. Med Sci Sports exerc. 1992;24(2):197–205.

    CAS  PubMed  Google Scholar 

  20. Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SS, Huard J. Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res. 2000;370:272–85.

    Google Scholar 

  21. Lee C, Fukushima K, Usas A, Xin L, Pelinkovic D, Martinek V, Huard J. Biological intervention based on cell and gene therapy to improve muscle healing after laceration. J Musculoskelet Res. 2000;4(4):256–77.

    Article  Google Scholar 

  22. Lehto M, Duance VC, Restall D. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg Br. 1985;67(5):820–8.

    CAS  PubMed  Google Scholar 

  23. Lehto MU, Jarvinen MJ. Muscle injuries, their healing process and treatment. Ann Chir Gynaecol. 1991;80(2):102–8.

    CAS  PubMed  Google Scholar 

  24. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004;164(3):1007–19.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther. 2007;15(9):1616–22.

    Article  CAS  PubMed  Google Scholar 

  26. Lipton BH, Schultz E. Developmental fate of skeletal muscle satellite cells. Science. 1979;205(4412):1292–4.

    Article  CAS  PubMed  Google Scholar 

  27. Macaluso F, Myburgh KH. Current evidence that exercise can increase the number of adult stem cells. J Muscle Res Cell Motil. 2012;33(3–4):187–98.

    Article  CAS  PubMed  Google Scholar 

  28. Mackey AL, Mikkelsen UR, Magnusson SP, Kjaer M. Rehabilitation of muscle after injury – the role of anti-inflammatory drugs. Scand J Med Sci Sports. 2012;22(4):e8–14.

    Article  CAS  PubMed  Google Scholar 

  29. Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995;333(13):832–8.

    Article  CAS  PubMed  Google Scholar 

  30. Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH, Moreland MS, Huard J. Growth factors improve muscle healing in vivo. J Bone Joint Surg Br. 2000;82(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  31. Menetrey J, Kasemkijwattana C, Fu FH, Moreland MS, Huard J. Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. Am J Sports Med. 1999;27(2):222–9.

    CAS  PubMed  Google Scholar 

  32. Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001;27(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  33. Nikolaou PK, Macdonald BL, Glisson RR, Seaber AV, Garrett Jr WE. Biomechanical and histological evaluation of muscle after controlled strain injury. Am J Sports Med. 1987;15(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  34. Oshima H, Payne TR, Urish KL, Sakai T, Ling Y, Gharaibeh B, Tobita K, Keller BB, Cummins JH, Huard J. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther. 2005;12(6):1130–41.

    Article  CAS  PubMed  Google Scholar 

  35. Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY, Lee EJ, Hong IH, Kwon SH, Kim SJ, et al. Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-beta and fibrosis in skeletal muscle injury. Cell Transplant. 2012;21(11):2407–24.

    Article  PubMed  Google Scholar 

  36. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989;337(6203):176–9.

    Article  CAS  PubMed  Google Scholar 

  37. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002;157(5):851–64.

    Article  CAS  PubMed  Google Scholar 

  38. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle. 2011;1(1):4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE. HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve. 2000;23(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  40. Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol. 2003;62(9):951–67.

    CAS  PubMed  Google Scholar 

  41. Sporn MB, Roberts AB. A major advance in the use of growth factors to enhance wound healing. J Clin Invest. 1993;92(6):2565–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tavian M, Zheng B, Oberlin E, Crisan M, Sun B, Huard J, Peault B. The vascular wall as a source of stem cells. Ann N Y Acad Sci. 2005;1044:41–50.

    Article  PubMed  Google Scholar 

  43. Tedesco FS, Cossu G. Stem cell therapies for muscle disorders. Curr Opin Neurol. 2012;25(5):597–603.

    Article  PubMed  Google Scholar 

  44. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120(1):11–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Toumi H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med. 2003;37(4):284–6.

    Article  CAS  PubMed  Google Scholar 

  46. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68.

    Article  CAS  PubMed  Google Scholar 

  47. Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF. Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol. 1990;111(4):1623–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Laumonier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laumonier, T., Menetrey, J., Huard, J. (2014). Basic Principles of Muscle Healing. In: Kerkhoffs, G., Servien, E. (eds) Acute Muscle Injuries. Springer, Cham. https://doi.org/10.1007/978-3-319-03722-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03722-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03721-9

  • Online ISBN: 978-3-319-03722-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics