Skip to main content

Polycrystalline Diamond and Cr Double Coatings Protect Zr Nuclear Fuel Tubes Against Accidental Temperature Corrosion in Water-Cooled Nuclear Reactors

  • Chapter
  • First Online:
Coatings for High-Temperature Environments

Abstract

The chapter proposes a new strategy for protecting Zr alloy nuclear fuel tubes from accidental temperature corrosion in water-cooled nuclear reactors. Protection of the zirconium alloy fuel tubes against accidental temperature corrosion in water-cooled nuclear reactors is important for the safety and efficiency of nuclear power plants, as corrosion in fuel tubes can lead to accidents and reduce the lifespan of the fuel. The new strategy of zirconium alloy fuel tubes from accidental temperature corrosion presented here involves a combination of polycrystalline diamond (PCD) and chromium (Cr) layers. The PCD layer prevents direct interaction between the Zr alloy surface and the hot water environment of the reactor and releases carbon into the underlying Zr material to alter conditions for the penetration of oxygen and hydrogen. The Cr layer helps to reduce corrosion by forming carbides and improving adhesion of the coatings to the Zr alloy substrate. The chapter also discusses the importance of the order of the Cr and PCD layers and the parameters affecting the corrosion of coated ZIRLO tubes. Overall, this new strategy has the potential to significantly improve nuclear safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinkle, S.J., Terrani, K.A., Gehin, J.C., Ott, L.J., Snead, L.L.: Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448, 374–379 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.005

    Article  CAS  Google Scholar 

  2. Hirano, M., Yonomoto, T., Ishigaki, M., Watanabe, N., Maruyama, Y., Sibamoto, Y., Watanabe, T., Moriyama, K.: Insights from review and analysis of the Fukushima Dai-ichi accident. J. Nucl. Sci. Technol. 49, 1–17 (2012). https://doi.org/10.1080/18811248.2011.636538

    Article  CAS  Google Scholar 

  3. Burns, P.C., Ewing, R.C., Navrotsky, A.: Nuclear fuel in a reactor accident. Science 335, 1184–1188 (2012). https://doi.org/10.1126/science.1211285

    Article  CAS  Google Scholar 

  4. Vujic, J., Bergmann, R.M., Skoda, R., Miletic, M.: Small modular reactors: simpler, safer, cheaper? Energy 45, 288–295 (2012). https://doi.org/10.1016/j.energy.2012.01.078

    Article  Google Scholar 

  5. Rudling, P., Adamson, R.B.: In: Murty, K.L. (ed.) Materials’ Ageing and Degradation in Light Water Reactors: mechanisms and Management, pp. 246–283.Woodhead Publ Ltd., Cambridge (2013). ISBN 978-0-85709-239-7

    Google Scholar 

  6. Rudling, P., Wikmark, G.: A unified model of Zircaloy BWR corrosion and hydriding mechanisms. J. Nucl. Mater. 265, 44–59 (1999). https://doi.org/10.1016/S0022-3115(98)00613-8

    Article  CAS  Google Scholar 

  7. Hogberg, L.: Root causes and impacts of severe accidents at large nuclear power plants. Ambio 42, 267–284 (2013). https://doi.org/10.1007/s13280-013-0382-x

    Article  Google Scholar 

  8. Baek, J.H., Jeong, Y.H.: Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372, 152–159 (2008). https://doi.org/10.1016/j.jnucmat.2007.02.011

    Article  CAS  Google Scholar 

  9. Steinbruck, M.: High-temperature reaction of oxygen-stabilized alpha-Zr(O) with nitrogen. J. Nucl. Mater. 447, 46–55 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.024

    Article  CAS  Google Scholar 

  10. Zhong, W.C., Mouche, P.A., Han, X.C., Heuser, B.J., Mandapaka, K.K., Was, G.S.: Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions. J. Nucl. Mater. 470, 327–338 (2016). https://doi.org/10.1016/j.jnucmat.2015.11.037

    Article  CAS  Google Scholar 

  11. Terrani, K.A.: Accident tolerant fuel cladding development: promise, status, and challenges. J. Nucl. Mater. 501, 13–30 (2018). https://doi.org/10.1016/j.jnucmat.2017.12.043

    Article  CAS  Google Scholar 

  12. Liao, J., Wang, H., Wu, J., Zhang, W., Xu, F., Sun, H., An, X., Qiu, S.: Addition of Niobium in Fe–13Cr–4.5Al–2Mo alloy used as Atf cladding: effect on high temperature water corrosion and in-situ electrochemistry. Mater. Des. 220 (2022). https://doi.org/10.1016/j.matdes.2022.110854

  13. Cheng, B.: Encyclopedia of Physical Science and Technology, 3rd edn. Electric Power Res Inst Inc. (2003). https://doi.org/10.1016/B978-0-08-056033-5.00040-9

  14. Konings, R.: Comprehensive Nuclear Materials. Elsevier, Comprehensive Nuclear Materials | ScienceDirect (2012)

    Google Scholar 

  15. Brachet, J.C., Urvoy, S., Rouesne, E., Nony, G., Dumerval, M., Le Saux, M., Ott, F., Michau, A., Schuster, F., Maury, F.: DLI-MOCVD CrxCy coating to prevent Zr-based cladding from inner oxidation and secondary hydriding upon LOCA conditions. J. Nucl. Mater. 550, 25 (2021). https://doi.org/10.1016/j.jnucmat.2021.152953

    Article  CAS  Google Scholar 

  16. Hu, X.G., Dong, C., Wang, Q., Chen, B.Q., Yang, H.Y., Wei, T.G., Zhang, R.Q., Gu, W., Chen, D.M.: High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings. J. Nucl. Mater. 519, 145–156 (2019). https://doi.org/10.1016/j.jnucmat.2019.01.039

    Article  CAS  Google Scholar 

  17. Bischoff, J., Delafoy, C., Vauglin, C., Barberis, P., Roubeyrie, C., Delphine, P., Dominique, D., Schuster, F., Brachet, J.C., Schweitzer, E.W., Nimishakavi, K.: AREVA NP’s enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding. Nucl. Eng. Technol. 50, 223–228 (2018). https://doi.org/10.1016/j.net.2017.12.004

    Article  CAS  Google Scholar 

  18. Chen, H., Wang, X.M., Zhang, R.Q.: Application and development progress of Cr-based surface coating in nuclear fuel elements: II. Current status and shortcomings of performance studies. Coatings 10 (2020)

    Google Scholar 

  19. de Gabory, B., Motta, A.T., Wang, K.: Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO (TM) oxide layers. J. Nucl. Mater. 456, 272–280 (2015). https://doi.org/10.3390/coatings10090835

    Article  CAS  Google Scholar 

  20. In-reactor corrosion performance of ZIRLO(TM)4 and ZIRCALOY-4. In: Proceedings of the 10th International Symposium on Zirconium in the Nuclear Industry, Baltimore, Md (1993). ISBN 0-8031-2011-7; TRN: 95:012925

    Google Scholar 

  21. Bowden, D., Ward, J., Middleburgh, S., Shubeita, S.D., Zapata-Solvas, E., Lapauw, T., Vleugels, J., Lambrinou, K., Lee, W.E., Preuss, M., Frankel, P.: The stability of irradiation-induced defects in Zr3AlC2, Nb4AlC3 and (Zr-0.5,Ti-0.5)(3)AlC2 MAX phase-based ceramics. Acta Mater. 183, 24–35 (2020). https://doi.org/10.1016/j.actamat.2019.10.049

  22. Kratochvilova, I., Celbova, L., Ashcheulov, P., Kopecek, J., Klimsa, L., de Prado, E., Dragounova, K.A., Lustinec, J., Macak, J., Sajdl, P., Skoda, R., Bulir, J.: Polycrystalline diamond and magnetron sputtered chromium as a double coating for accident-tolerant nuclear fuel tubes. J. Nucl. Mater. 578 (2023). https://doi.org/10.1016/j.jnucmat.2023.154333

  23. Alemanno, E., Martino, M., Caricato, A.P., Corrado, M., Pinto, C., Spagnolo, S., Chiodini, G., Perrino, R., Fiore, G.: Laser induced nano-graphite electrical contacts on synthetic polycrystalline CVD diamond for nuclear radiation detection. Diam. Relat. Mater. 38, 32–35 (2013). https://doi.org/10.1016/j.diamond.2013.06.006

    Article  CAS  Google Scholar 

  24. Kanxheri, K., Aisa, D., Solestizi, L.A., Bellini, M., Caprai, M., Corsi, C., Dipilato, A.C., Iacco, M., Ionica, M., Lagomarsino, S., Morozzi, A., Moscatelli, F., Passeri, D., Sciortino, S., Talamonti, C., Zucchetti, C., Servoli, L.: Intercalibration of a polycrystalline 3D diamond detector for small field dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip. 958 (2020). https://doi.org/10.1016/j.nima.2019.162730

  25. Ashcheulov, P., Skoda, R., Skarohlid, J., Taylor, A., Fekete, L., Fendrych, F., Vega, R., Shao, L., Kalvoda, L., Vratislav, S., Chab, V., Horakova, K., Kusova, K., Klimsa, L., Kopecek, J., Sajdl, P., Macak, J., Johnson, S., Kratochvilova, I.: Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities. Appl. Surf. Sci. 359, 621–628 (2015). https://doi.org/10.1016/j.apsusc.2015.10.117

    Article  CAS  Google Scholar 

  26. Skarohlid, J., Ashcheulov, P., Skoda, R., Taylor, A., Ctvrtlik, R., Tomastik, J., Fendrych, F., Kopecek, J., Chab, V., Cichon, S., Sajdl, P., Macak, J., Xu, P., Partezana, J.M., Lorincik, J., Prehradna, J., Steinbrueck, M., Kratochvilova, I.: Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: nuclear fuel durability enhancement. Sci. Rep. 7, 14 (2017). https://doi.org/10.1038/s41598-017-06923-4

  27. Kratochvilova, I., Ashcheulov, P., Skarohlid, J., Skoda, R., Kopecek, J., Sajdl, P., Macak, J., Lajcinova, M., Novakova, A., Neethling, J., van Vuuren, A.J., Ngongo, S., Xu, P., Lorincik, J., Steinbruck, M.: Zr alloy protection against high-temperature oxidation: coating by a double-layered structure with active and passive functional properties. Corros. Sci. 163, 11 (2020). https://doi.org/10.1016/j.corsci.2019.108270

    Article  CAS  Google Scholar 

  28. Kratochvilova, I., Skoda, R., Skarohlid, J., Ashcheulov, P., Jager, A., Racek, J., Taylor, A., Shao, L.: Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes. J. Mater. Process. Technol. 214, 2600–2605 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.009

    Article  CAS  Google Scholar 

  29. Popov, C., Kulisch, W., Jelinek, M., Bock, A., Strnad, J.: Polycrystalline diamond films for X-ray lithography mask. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 75, 61–67 (2000). https://doi.org/10.1016/S0921-5107(00)00384-6

    Article  Google Scholar 

  30. Popov, C., Kulisch, W., Jelinek, M., Bock, A., Strnad, J.: Nanocrystalline diamond/amorphous carbon composite films for applications in tribology, optics and biomedicine. Thin Solid Films 494, 92–97 (2006). https://doi.org/10.1016/j.tsf.2005.07.163

    Article  CAS  Google Scholar 

  31. Li, D.S., Zuo, D.W., Lu, W.Z., Chen, R.F., Xiang, B.K., Wang, M.: Polycrystalline columnar diamond film deposited on spherical substrate by DC arc plasma CVD. In: Proceedings of the 5th International Conference on Surface Engineering. Dalian Univ Technol, Dalian, Peoples R China (2007). https://doi.org/10.4028/www.scientific.net/kem.373-374.134

  32. Fendrych, F., Taylor, A., Peksa, L., Kratochvilova, I., Vlcek, J., Rezacova, V., Petrak, V., Kluiber, Z., Fekete, L., Liehr, M., Nesladek, M.: Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D-Appl. Phys. 43 (2010). https://doi.org/10.1088/0022-3727/43/37/374018

  33. Jung, D.H., Park, H.S., Na, H.D., Lim, J.W., Lee, J.J., Joo, J.H.: Mechanical properties of (Ti, Cr)N coatings deposited by inductively coupled plasma assisted direct current magnetron sputtering. Surf. Coat. Technol. 169, 424–427 (2003). https://doi.org/10.1016/S0257-8972(03)00146-4

    Article  CAS  Google Scholar 

  34. Li, Z., Liu, C.H., Chen, Q.S., Yang, J.J., Liu, J.M., Yang, H.Y., Zhang, W., Zhang, R.Q., He, L.X., Long, J.P., Chang, H.: Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering. Corros. Sci. 191 (2021). https://doi.org/10.1016/j.corsci.2021.109755

  35. Pelaez, R.J., Afonso, C.N., Skeren, M., Bulir, J.: Density patterns in metal films produced by laser interference. Nanotechnology 26 (2015). https://doi.org/10.1088/0957-4484/26/25/255301

  36. Mattox, D.M., Mattox, D.M.: Handbook of Physical Vapor Deposition (PVD) Processing Second edition Preface (2010). https://doi.org/10.1016/C2009-0-18800-1

  37. Celbova, L., Ashcheulov, P., Klimsa, L., Kopecek, J., Dragounova, K.A., Lustinec, J., Macak, J., Skoda, R., Kratochvilova, I.: Diamond coating reduces nuclear fuel rod corrosion at accidental temperatures: the role of surface electrochemistry and semiconductivity. Materials 14 (2021). https://doi.org/10.3390/ma14216315

  38. Shen, L., Han, Y.H., Xiang, C.S., Tang, H.P., Mukherjee, A., Kim, S., Bae, S.I., Huang, Q.: Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering. Scripta Mater. 69, 736–739 (2013). https://doi.org/10.1016/j.scriptamat.2013.08.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Kratochvílová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kratochvílová, I., Ashcheulov, P., Luštinec, J., Macák, J., Sajdl, P., Škoda, R. (2024). Polycrystalline Diamond and Cr Double Coatings Protect Zr Nuclear Fuel Tubes Against Accidental Temperature Corrosion in Water-Cooled Nuclear Reactors. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45534-6_4

Download citation

Publish with us

Policies and ethics