Skip to main content

Treatment and Management of Hazardous Solid Waste Stream by Incineration

  • Chapter
  • First Online:
Waste Treatment in the Biotechnology, Agricultural and Food Industries

Abstract

Hazardous waste is generated from many sources, ranging from industrial, manufacturing processes, agricultural practices, etc., and may come in many forms, including liquids, solids, gases, and sludges. The waste incineration technique is one of the waste-to-energy technologies that can reduce waste effectively and generate energy. However, the technology will generate high amounts of toxic gases such as dioxin and nitrous oxide, requiring high energy and operational cost as well. The residues that are generated from the incineration are incineration bottom ash or fly ash, which can also be known as hazardous waste because it contains a high number of pollutants that will affect the environment and human health. Various studies have found a way to treat the incineration fly ash before discharging it to the landfill. Since the incineration fly ash contains a high concentration of heavy metals, stabilization and solidification of the heavy metals is needed to prevent the leaching of heavy metals. Most of the incineration fly ash can be used as a replacement material in construction materials to enhance mechanical properties and reduce the leaching of heavy metals. Although incineration fly ash can be applied to construction materials, an optimum mixing ratio is required because a high replacement ratio will reduce the mechanical properties of the materials. Co-incineration is advised to lessen the burden of incineration in order to combat the high disposal of municipal solid waste by incineration. However, co-incineration is not suitable for long service; alternative techniques are needed to overcome the high disposal of waste. The laws and regulations for incineration need to be enforced to protect the environment and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biochemical oxygen demand

CaO:

Calcium oxide

CEWEP:

Confederation of European Waste-to-Energy Plants

CHP:

Combined heat and power

COD:

Chemical oxygen demand

Cr:

Chromium

C-S-H:

Calcium silicate hydrate

CV:

Variation coefficient

DOT:

Dictionary of Occupational Titles

EEB:

European Environmental Bureau

EFW:

Energy from waste

EPA:

Environmental Protection Agency

FBF:

Fluidized bed incinerators

H2NCSNH2:

Thiourea

Max:

maximum

Min:

Minimum

MSW:

Municipal solid waste

MW:

Megawatt

N2:

Nitrogen gas

NaH2PO4:

Monosodium phosphate

NOX:

Nitrogen oxides

O2:

Oxygen gas

OSHA:

Occupational Safety and Health Administration

PAH:

Polycyclic aromatic hydrocarbons

PCDD/F:

Polychlorinated dibenzo-p-dioxins and dibenzofurans

PM:

Particulate matter

PVC:

Polyvinyl chloride

RCRA:

Resource Conversation and Recovery Act

RDF:

Refuse-derived fuel

SAC:

Starved air combustion

SD:

Standard deviation

Si:

Silicon

SNCR:

Selective non-catalytic reduction

TCLP:

Toxicity Characteristic Leaching Procedure

WtE:

Waste-to-energy

CO2 eq:

Carbon dioxide equivalent

cm:

Centimeter

oC:

Degree Celsius

oF:

Degree Fahrenheit

D:

Diameter

GJ:

Gigajoule

GWh:

Gigawatt hour

Kg:

Kilogram

kW:

Kilowatt

L:

Liter

MW:

Megawatt

MWh:

Megawatt hour

mm:

Millimeter

mol:

Mole

%:

Percent

S:

Second

Ton:

Tonnes

wt%:

Weight percent

References

  1. Moharir, R. V., Gautam, P., & Kumar, S. (2019). Waste treatment processes/technologies for energy recovery. In S. Kumar & A. P. Rakesh Kumar (Eds.), Current developments in biotechnology and bioengineering: Waste treatment processes for energy generation (pp. 53–77). Elsevier. ISBN 978-0-444-64083-3.

    Chapter  Google Scholar 

  2. Gupta, P., Kumar, A., & Sinhamahapatra, A. (2022). Liquid fuel from plastic waste. In M. S. J. Hashmi (Ed.), Encyclopedia of materials: Plastics and polymers (Vol. 2, pp. 904–916). Elsevier. ISBN 1566766613.

    Chapter  Google Scholar 

  3. Callao, C., Martinez-Nuñez, M., & Latorre, M. P. (2019). European countries: Does common legislation guarantee better hazardous waste performance for European Union member states? Waste Management, 84, 147–157. https://doi.org/10.1016/j.wasman.2018.11.014

    Article  Google Scholar 

  4. Brunner, C. R. (1993). Hazardous waste incineration. McGraw Hill.

    Google Scholar 

  5. Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., Cappai, G., Magel, G., Salhofer, S., Speiser, C., et al. (2003). Management of municipal solid waste incineration residues. Waste Management, 23, 61–88. https://doi.org/10.1016/S0956-053X(02)00161-7

    Article  CAS  Google Scholar 

  6. Santoleri, J. J., Reynolds, J., & Theodore, K. (2000). Introduction to hazardous waste incineration (2nd ed.). ISBN 978-0-471-01790-5.

    Google Scholar 

  7. Tuppurainen, K., Halonen, I., Ruokojärvi, P., Tarhanen, J., & Ruuskanen, J. (1998). Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review. Chemosphere, 36, 1493–1511. https://doi.org/10.1016/S0045-6535(97)10048-0

    Article  CAS  Google Scholar 

  8. Council, N.R. (2000). Waste incineration overview. In Waste incineration & public health. National Academies Press.

    Google Scholar 

  9. Oppelt, E. T. (1987). Incineration of hazardous waste a critical review. Journal of the Air Pollution Control Association, 37, 558–586. https://doi.org/10.1080/08940630.1987.10466245

    Article  CAS  Google Scholar 

  10. Lu, J. W., Zhang, S., Hai, J., & Lei, M. (2017). Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 69, 170–186. https://doi.org/10.1016/j.wasman.2017.04.014

    Article  Google Scholar 

  11. United States Environmental Protection Agency Learn the Basics of Hazardous Waste Available online: https://www.epa.gov/hw/learn-basics-hazardous-waste

  12. Porteous, A. (2005). Why energy from waste incineration is an essential component of environmentally responsible waste management. Waste Management, 25, 451–459. https://doi.org/10.1016/j.wasman.2005.02.008

    Article  CAS  Google Scholar 

  13. Adamović, V. M., Antanasijević, D. Z., Ristić, M., Perić-Grujić, A. A., & Pocajt, V. V. (2018). An optimized artificial neural network model for the prediction of rate of hazardous chemical and healthcare waste generation at the national level. Journal of Material Cycles and Waste Management, 20, 1736–1750. https://doi.org/10.1007/s10163-018-0741-6

    Article  Google Scholar 

  14. Alumur, S., & Kara, B. Y. (2007). A new model for the hazardous waste location-routing problem. Computers and Operations Research, 34, 1406–1423. https://doi.org/10.1016/j.cor.2005.06.012

    Article  Google Scholar 

  15. Vani, S. V. S., Bhaumik, S., Nandan, A., & Siddiqui, N. A. (2017). Hazardous waste- impact on health and environment for sustainable development in India. World Scientific News, 70, 158–172. https://doi.org/10.1016/j.envint.2004.08.005

    Article  CAS  Google Scholar 

  16. Koolivand, A., Mazandaranizadeh, H., Binavapoor, M., Mohammadtaheri, A., & Saeedi, R. (2017). Hazardous and industrial waste composition and associated management activities in Caspian Industrial Park, Iran. Environmental Nanotechnology, Monitoring and Management, 7, 9–14. https://doi.org/10.1016/j.enmm.2016.12.001

    Article  Google Scholar 

  17. Mohamed, A. F., Awang, M., Nasir, M. H., & Abu Bakar, J. (2008). Ecosystem approach for sustainable industrial hazardous waste management in Malaysia. Environmental Research Journal, 2, 306–310.

    Google Scholar 

  18. Salihoglu, G. (2010). Industrial hazardous waste management in Turkey: Current state of the field and primary challenges. Journal of Hazardous Materials, 177, 42–56. https://doi.org/10.1016/j.jhazmat.2009.11.096

    Article  CAS  Google Scholar 

  19. Duan, H., Huang, Q., Wang, Q., Zhou, B., & Li, J. (2008). Hazardous waste generation and management in China: A review. Journal of Hazardous Materials, 158, 221–227. https://doi.org/10.1016/j.jhazmat.2008.01.106

    Article  CAS  Google Scholar 

  20. Grosso, M., Motta, A., & Rigamonti, L. (2010). Efficiency of energy recovery from waste incineration, in the light of the new waste framework directive. Waste Management, 30, 1238–1243. https://doi.org/10.1016/j.wasman.2010.02.036

    Article  Google Scholar 

  21. Fathima, N. N., Rao, J. R., & Nair, B. U. (2014). Effective utilization of solid waste from leather industry. In M. Fanun (Ed.), The role of colloidal systems in environmental protection (pp. 593–613).

    Chapter  Google Scholar 

  22. Liu, Y., Mo, Z., Su, Y., & Chen, Y. (2022). State-of-the-art controlled low-strength materials using incineration industrial by-products as cementitious materials. Construction and Building Materials, 345, 128391. https://doi.org/10.1016/j.conbuildmat.2022.128391

    Article  CAS  Google Scholar 

  23. Fellner, J., & Schwarzböck, T. (2021). Performance impairment of waste to energy plants during waste delivery times – An analysis of relevant operating parameter. Waste Management, 124, 303–313. https://doi.org/10.1016/j.wasman.2021.02.022

    Article  Google Scholar 

  24. Mackin, K. J., & Fujiyoshi, M. (2018). Intelligent waste crane scheduling using evolutionary computation. In Proceedings of the 2018 joint 10th international conference on soft computing and intelligent systems (SCIS) and 19th international symposium on advanced intelligent systems (ISIS). IEEE.

    Google Scholar 

  25. Denison, R., & Ruston, J. (1990). Recycling and incineration: Evaluating the choices. Island Press. ISBN 1-55963-055-8.

    Google Scholar 

  26. Clarke, M. J., De Kadt, M., & Saphire, D. (1991). Burning garbage in the US: Practice vs state of the art. Inform. ISBN 978-0918780492.

    Google Scholar 

  27. Tuffaha, R. B. R. (2006). Impacts of solid waste leachate on soil and its simulation to ground water at Nablus area. An-Najah National University.

    Google Scholar 

  28. Cunningham, W. P., & Cunningham, M. A. (2018). Environmental science: A global concern (14th ed.). McGraw Hill Education. ISBN 9781259631153.

    Google Scholar 

  29. Stear, J. R. (1971). Municipal incineration: A review of literature. U.S. Environmental Protection Agency.

    Google Scholar 

  30. Makarichi, L., Jutidamrongphan, W., & Techato, K. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088

    Article  CAS  Google Scholar 

  31. Santoleri, J. J. (1983). Heat recovery--an economic benefit to hazardous waste incineration systems. Heat Recovery Systems, 3, 145–155.

    Article  CAS  Google Scholar 

  32. Sun, R., Ismail, T. M., Ren, X., & El-Salam, M. A. (2016). Influence of simulated MSW sizes on the combustion process in a fixed bed: CFD and experimental approaches. Waste Management, 49, 272–286. https://doi.org/10.1016/j.wasman.2015.12.019

    Article  CAS  Google Scholar 

  33. Fitzgerald, G. C. (2013). Pre-processing and treatment of Municipal Solid Waste (MSW) prior to incineration. In N. B. Klinghoffer & M.J.C (Eds.), Waste to energy conversion technology (pp. 55–71 ISBN 2013206534). Woodhead Publishing.

    Chapter  Google Scholar 

  34. Cesaro, A., & Belgiorno, V. (2014). Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chemical Engineering Journal, 240, 24–37. https://doi.org/10.1016/j.cej.2013.11.055

    Article  CAS  Google Scholar 

  35. Brown, R. C. (2019). Thermochemical processing of biomass: Conversion into fuels, chemicals and power (2nd ed.). ISBN 9781119417576.

    Book  Google Scholar 

  36. Rand, T., Haukohl, J., & Marxen, U. (2000). Municipal solid waste incineration: A decision maker’s guide. World Bank, International Bank for Reconstruction and Development.

    Google Scholar 

  37. Wan, S., Zhou, X., Zhou, M., Han, Y., Chen, Y., Geng, J., Wang, T., Xu, S., Qiu, Z. D., & Hou, H. (2018). Hydration characteristics and modeling of ternary system of municipal solid wastes incineration fly ash-blast furnace slag-cement. Construction and Building Materials, 180, 154–166. https://doi.org/10.1016/j.conbuildmat.2018.05.277

    Article  CAS  Google Scholar 

  38. Zacco, A., Borgese, L., Gianoncelli, A., Struis, R. P. W. J., Depero, L. E., & Bontempi, E. (2014). Review of fly ash inertisation treatments and recycling. Environmental Chemistry Letters, 12, 153–175. https://doi.org/10.1007/s10311-014-0454-6

    Article  CAS  Google Scholar 

  39. Hangebrauck, R. P., Von Lehmden, D. J., & Meeker, J. E. (1964). Emissions of polynuclear hydrocarbons and other pollutants from heat-generation and incineration processes. Journal of the Air Pollution Control Association, 14, 267–278. https://doi.org/10.1080/00022470.1964.10468281

    Article  CAS  Google Scholar 

  40. Davies, I. W., Harrison, R. M., Perry, R., Ratnayaka, D., & Wellings, R. A. (1976). Municipal incinerator as source of polynuclear aromatic hydrocarbons in environment. Environmental Science and Technology, 10, 451–453. https://doi.org/10.1021/es60116a009

    Article  CAS  Google Scholar 

  41. Fängmark, I., van Bavel, B., Marklund, S., Strömberg, B., Berge, N., & Rappe, C. (1993). Influence of combustion parameters on the formation of polychlorinated Dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environmental Science and Technology, 27, 1602–1610. https://doi.org/10.1021/es00045a016

    Article  Google Scholar 

  42. Oehme, M., Manø, S., & Mikalsen, A. (1987). Formation and presence of polyhalogenated and polycyclic compounds in the emissions of small and large scale municipal waste incinerators. Chemosphere, 16, 143–153. https://doi.org/10.1016/0045-6535(87)90118-4

    Article  CAS  Google Scholar 

  43. McKay, G. (2002). Dioxin characterisation, formation and minimisation during Municipal Solid Waste (MSW) incineration: Review. Chemical Engineering Journal, 86, 343–368. https://doi.org/10.1016/S1385-8947(01)00228-5

    Article  CAS  Google Scholar 

  44. Brna, T.G.; Sedman, C.B. Waste incineration and emission control technologies; , 1987;

    Google Scholar 

  45. Fruergaard, T., Christensen, T. H., & Astrup, T. (2010). Energy recovery from waste incineration: Assessing the importance of district heating networks. Waste Management, 30, 1264–1272. https://doi.org/10.1016/j.wasman.2010.03.026

    Article  CAS  Google Scholar 

  46. Holmgren, K., & Gebremedhin, A. (2004). Modelling a district heating system: Introduction of waste incineration, policy instruments and co-operation with an industry. Energy Policy, 32, 1807–1817. https://doi.org/10.1016/S0301-4215(03)00168-X

    Article  Google Scholar 

  47. Knutsson, D., Sahlin, J., Werner, S., Ekvall, T., & Ahlgren, E. O. (2006). HEATSPOT - a simulation tool for National District Heating Analyses. Energy, 31, 278–293. https://doi.org/10.1016/j.energy.2005.02.005

    Article  Google Scholar 

  48. Sahlin, J., Knutsson, D., & Ekvall, T. (2004). Effects of planned expansion of waste incineration in the Swedish District heating systems. Resources, Conservation and Recycling, 41, 279–292. https://doi.org/10.1016/j.resconrec.2003.11.002

    Article  Google Scholar 

  49. Sankaran, S., Pandey, S., & Sumathy, K. (1998). Experimental investigation on waste heat recovery by refinery oil sludge incineration using Fluidised-Bed Technique. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 33, 829–845. https://doi.org/10.1080/10934529809376764

    Article  Google Scholar 

  50. Wong, W. Y., Lu, Y., Nasserzadeh, V. S., Swithenbank, J., Shaw, T., & Madden, M. (2000). Experimental investigation into the incineration of wool scouring sludges in a novel rotating fluidised bed. Journal of Hazardous Materials, 73, 143–160. https://doi.org/10.1016/S0304-3894(99)00171-5

    Article  CAS  Google Scholar 

  51. Mohamed, N. A. H., Zakaria, R., Yunus, M. N. M. (2006). The development of high temperature recirculating pump (Htrp) for energy savings in an incinerator. pp. 26–29.

    Google Scholar 

  52. Swarnalatha, S., Ramani, K., Karthi, A. G., & Sekaran, G. (2006). Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery. Journal of Hazardous Materials, 137, 304–313. https://doi.org/10.1016/j.jhazmat.2006.02.006

    Article  CAS  Google Scholar 

  53. Ameen, N., Mohamed, H., Zakaria, R., Noor, M., & Yunus, M. (2006). The development of High Temperature Recirculating Pump (HTRP) for energy savings in an incinerator Noorul. In Proceedings of the 4th i-CIPEC.

    Google Scholar 

  54. Ioannidis, T. A., & Zouboulis, A. I. (2003). Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using Apatites. Journal of Hazardous Materials, 97, 173–191. https://doi.org/10.1016/S0304-3894(02)00258-3

    Article  CAS  Google Scholar 

  55. Jiang, X., Li, Y., & Yan, J. (2019). Hazardous waste incineration in a rotary kiln: A review (Vol. 1). Springer. ISBN 0123456789.

    Google Scholar 

  56. Marias, F. (2003). A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases. Computers and Chemical Engineering, 27, 813–825. https://doi.org/10.1016/S0098-1354(02)00268-5

    Article  CAS  Google Scholar 

  57. IDRECO Rotary incinerators for industrial wastes Available online: https://www.idreco.com/rotary-incinerators-for-industrial-wastes/. Accessed on 18 July 2023.

  58. Huber, F., Blasenbauer, D., Mallow, O., Lederer, J., Winter, F., & Fellner, J. (2016). Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Management, 58, 181–190. https://doi.org/10.1016/j.wasman.2016.09.013

    Article  CAS  Google Scholar 

  59. Wey, M. Y., Liu, K. Y., Tsai, T. H., & Chou, J. T. (2006). Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. Journal of Hazardous Materials, 137, 981–989. https://doi.org/10.1016/j.jhazmat.2006.03.024

    Article  CAS  Google Scholar 

  60. Khan, J. A., Pal, D., & Morse, J. S. (1993). Numerical modeling of a rotary kiln incinerator. Hazardous Waste and Hazardous Materials, 10, 81–95. https://doi.org/10.1089/hwm.1993.10.81

    Article  CAS  Google Scholar 

  61. Owens, W. D., Silcox, G. D., Lighty, J. S., Deng, X. X., Pershing, D. W., Cundy, V. A., Leger, C. B., & Jakway, A. L. (1991). Thermal analysis of rotary kiln incineration: Comparison of theory and experiment. Combustion and Flame, 86, 101–114. https://doi.org/10.1016/0010-2180(91)90059-K

    Article  CAS  Google Scholar 

  62. Ebert, V., Teichert, H., Strauch, P., Kolb, T., Seifert, H., & Wolfrum, J. (2005). Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 Nm and New 2.3 Μm diode lasers. Proceedings of the Combustion Institute, 30, 1611–1618. https://doi.org/10.1016/j.proci.2004.08.224

    Article  CAS  Google Scholar 

  63. Willis, J. W., Cadou, C., Mitchell, M., Karagozian, A. R., & Smith, O. I. (1994). Destruction of liquid and gaseous waste surrogates in an acoustically excited dump combustor. Combustion and Flame, 99, 280–287. https://doi.org/10.1016/0010-2180(94)90132-5

    Article  Google Scholar 

  64. Banks, D. (1978). Liquid waste incinerators. Environmental Science & Technology, 12, 621.

    Article  Google Scholar 

  65. Murphy, A. B., & McAllister, T. (2001). Modeling of the physics and chemistry of thermal plasma waste destruction. Physics of Plasmas, 8, 2565–2571. https://doi.org/10.1063/1.1345884

    Article  CAS  Google Scholar 

  66. Othmer, K. (2000). Hazardous waste incinerators. In Encyclopedia of chemical technology. Wiley.

    Google Scholar 

  67. Barton, J. W., Klasson, K. T., Koran, J., & Davison, B. H. (1997). Microbial removal of alkanes from dilute gaseous waste streams: Kinetics and mass transfer considerations. Biotechnology Progress, 13, 814–821. https://doi.org/10.1021/bp970091c

    Article  CAS  Google Scholar 

  68. Wei, X., Xie, F., Dong, C., Wang, P., Xu, J., Yan, F., & Zhang, Z. (2022). Safe disposal of hazardous waste incineration fly ash: Stabilization/solidification of heavy metals and removal of soluble salts. SSRN Electronic Journal, 324, 116246. https://doi.org/10.2139/ssrn.4145561

    Article  CAS  Google Scholar 

  69. Chen, J., Lin, X., Li, M., Mao, T., Li, X., & Yan, J. (2022). Heavy metal solidification and CO 2 sequestration from MSWI Fly ash by calcium carbonate oligomer regulation. Journal of Cleaner Production, 359, 132044. https://doi.org/10.1016/j.jclepro.2022.132044

    Article  CAS  Google Scholar 

  70. Chen, J., Fu, C., Mao, T., Shen, Y., Li, M., Lin, X., Li, X., & Yan, J. (2022). Study on the accelerated carbonation of MSWI Fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chemical Engineering Journal, 450, 138418. https://doi.org/10.1016/j.cej.2022.138418

    Article  CAS  Google Scholar 

  71. Chen, W., Wang, Y., Sun, Y., Fang, G., & Li, Y. (2022). Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate solution. Chemosphere, 307, 135860. https://doi.org/10.1016/j.chemosphere.2022.135860

    Article  CAS  Google Scholar 

  72. Chuai, X., Yang, Q., Zhang, T., Zhao, Y., Wang, J., Zhao, G., Cui, X., Zhang, Y., Zhang, T., Xiong, Z., et al. (2022). Speciation and leaching characteristics of heavy metals from municipal solid waste incineration fly ash. Fuel, 328, 125338. https://doi.org/10.1016/j.fuel.2022.125338

    Article  CAS  Google Scholar 

  73. Long, L., Zhao, Y., Lv, G., Duan, Y., Liu, X., & Jiang, X. (2023). Improving stabilization/solidification of MSWI fly ash with coal gangue based geopolymer via increasing active calcium content. Science of the Total Environment, 854, 158594. https://doi.org/10.1016/j.scitotenv.2022.158594

    Article  CAS  Google Scholar 

  74. Song, M., Lan, T., Meng, Y., Ju, T., Chen, Z., Shen, P., Du, Y., Deng, Y., Han, S., & Jiang, J. (2022). Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - based materials incorporated with Metakaolin. Chemosphere, 308, 136089. https://doi.org/10.1016/j.chemosphere.2022.136089

    Article  CAS  Google Scholar 

  75. Zhang, J., Mao, Y., Wang, W., Wang, X., Li, J., Jin, Y., & Pang, D. (2022). A new co-processing mode of organic anaerobic fermentation liquid and municipal solid waste incineration fly ash. Waste Management, 151, 70–80. https://doi.org/10.1016/j.wasman.2022.07.016

    Article  CAS  Google Scholar 

  76. Guo, Y., Gong, C., Yang, L., Hu, M., & Hu, X. (2022). Thermodynamic and experimental study on migration characteristics of heavy metals during the melting process of incineration fly ash. Metals, 12. https://doi.org/10.3390/met12061036

  77. Yao, Z., Prabhakar, A. K., Cadiam Mohan, B., & Wang, C. H. (2022). An innovative accelerated carbonation process for treatment of incineration bottom ash and biogas upgrading. Waste Management, 144, 203–209. https://doi.org/10.1016/j.wasman.2022.03.033

    Article  CAS  Google Scholar 

  78. Zhan, X., Wang, L., Gong, J., Deng, R., & Wu, M. (2022). Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics. Chemosphere, 307, 135793. https://doi.org/10.1016/j.chemosphere.2022.135793

    Article  CAS  Google Scholar 

  79. Kim, H. M., Choi, T. Y., Park, M. J., & Jeong, D. W. (2022). Heavy metal removal using an advanced removal method to obtain recyclable paper incineration ash. Scientific Reports, 12, 1–11. https://doi.org/10.1038/s41598-022-16486-8

    Article  CAS  Google Scholar 

  80. Wei, Y., Liu, S., Yao, R., Chen, S., Gao, J., & Shimaoka, T. (2022). Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling. Waste Management, 150, 110–121. https://doi.org/10.1016/j.wasman.2022.06.041

    Article  CAS  Google Scholar 

  81. Yang, W., Cao, X., Zhang, Q., Ma, R., Fang, L., & Liu, S. (2022). Coupled microwave hydrothermal dechlorination and geopolymer preparation for the solidification/stabilization of heavy metals and chlorine in municipal solid waste incineration fly ash. Science of the Total Environment, 853, 158563. https://doi.org/10.1016/j.scitotenv.2022.158563

    Article  CAS  Google Scholar 

  82. Zhang, Z., Wang, Y., Zhang, Y., Shen, B., Ma, J., & Liu, L. (2022). Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash. Waste Management, 144, 285–293. https://doi.org/10.1016/j.wasman.2022.03.022

    Article  CAS  Google Scholar 

  83. Zhu, Y., Hu, Y., Guo, Q., Zhao, L., Li, L., Wang, Y., Hu, G., Wibowo, H., & Di Maio, F. (2022). The effect of wet treatment on the distribution and leaching of heavy metals and salts of bottom ash from municipal solid waste incineration. Environmental Engineering Science, 39, 409–417. https://doi.org/10.1089/ees.2021.0065

    Article  CAS  Google Scholar 

  84. Torres de Sande, V., Sadique, M., Bras, A., & Pineda, P. (2022). Activated sugarcane Bagasse ash as efficient admixture in cement-based mortars: Mechanical and durability improvements. Journal of Building Engineering, 59, 105082. https://doi.org/10.1016/j.jobe.2022.105082

    Article  Google Scholar 

  85. Sun, X., & Yi, Y. (2022). Amending excavated soft marine clay with fine incineration bottom ash as a fill material for construction of transportation infrastructure. Transportation Geotechnics, 35, 100796. https://doi.org/10.1016/j.trgeo.2022.100796

    Article  Google Scholar 

  86. Cempa, M., Olszewski, P., Wierzchowski, K., Kucharski, P., & Białecka, B. (2022). Ash from poultry manure incineration as a substitute for phosphorus fertiliser. Materials, 15. https://doi.org/10.3390/ma15093023

  87. Chyan, J. M., Lin, C. J., Yu, M. J., Shiu, R. F., Huang, D. J., Lin, C. S., & Senoro, D. B. (2022). An innovative reuse of bottom ash from municipal solid waste incinerators as substrates of constructed wetlands. Chemosphere, 307, 135896. https://doi.org/10.1016/j.chemosphere.2022.135896

    Article  CAS  Google Scholar 

  88. Tan, J., De Vlieger, J., Desomer, P., Cai, J., & Li, J. (2022). Co-disposal of construction and demolition waste (CDW) and municipal solid waste incineration fly ash ( MSWI FA ) through geopolymer technology. Journal of Cleaner Production, 362, 132502. https://doi.org/10.1016/j.jclepro.2022.132502

    Article  CAS  Google Scholar 

  89. Suescum-Morales, D., Silva, R. V., Bravo, M., Jiménez, J. R., Fernández-Rodríguez, J. M., & de Brito, J. (2022). Effect of incorporating municipal solid waste incinerated bottom ash in alkali-activated fly ash concrete subjected to accelerated CO2 curing. Journal of Cleaner Production, 370. https://doi.org/10.1016/j.jclepro.2022.133533

  90. Niu, M., Zhang, P., Guo, J., & Wang, J. (2022). Effect of municipal solid waste incineration fly ash on the mechanical properties and microstructure of geopolymer concrete. Gels, 8. https://doi.org/10.3390/gels8060341

  91. Wang, C., Zhang, P., Guo, J., Zhang, H., & Wang, T. (2022). Effect of municipal solid waste incineration ash on microstructure and hydration mechanism of geopolymer composites. Buildings, 12. https://doi.org/10.3390/buildings12060723

  92. Lan, T., Meng, Y., Ju, T., Song, M., Chen, Z., Shen, P., Du, Y., Deng, Y., Han, S., & Jiang, J. (2022). Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM). Chemosphere, 303, 134978. https://doi.org/10.1016/j.chemosphere.2022.134978

    Article  CAS  Google Scholar 

  93. Cao, F., Qiao, H., Shu, X., Cui, L., Li, S., & Zhang, T. (2022). Potential application of highland barley straw ash as a new active admixture in magnesium oxychloride cement. Journal of Building Engineering, 59, 105108. https://doi.org/10.1016/j.jobe.2022.105108

    Article  Google Scholar 

  94. Singh, A., Zhou, Y., Gupta, V., & Sharma, R. (2022). Sustainable use of different size fractions of municipal solid waste incinerator bottom ash and recycled fine aggregates in cement mortar. Case Studies in Construction Materials, 17, e01434. https://doi.org/10.1016/j.cscm.2022.e01434

    Article  Google Scholar 

  95. Huynh, T. P., & Ngo, S. H. (2022). Waste incineration bottom ash as a fine aggregate in mortar: An assessment of engineering properties, durability, and microstructure. Journal of Building Engineering, 52, 104446. https://doi.org/10.1016/j.jobe.2022.104446

    Article  Google Scholar 

  96. Vaičienė, M., & Simanavičius, E. (2022). The effect of municipal solid waste incineration ash on the properties and durability of cement concrete. Materials, 15. https://doi.org/10.3390/ma15134486

  97. Liu, J., Fan, X., Li, Z., Zhang, W., Jin, H., Xing, F., & Tang, L. (2022). Novel recycling application of high volume municipal solid waste incineration bottom ash (MSWIBA) into sustainable concrete. Science of the Total Environment, 838, 156124. https://doi.org/10.1016/j.scitotenv.2022.156124

    Article  CAS  Google Scholar 

  98. Liu, J., Li, Z., Zhang, W., Jin, H., Xing, F., Chen, C., Tang, L., & Wang, Y. (2022). Valorization of municipal solid waste incineration bottom ash (MSWIBA) into cold-bonded aggregates (CBAs): Feasibility and influence of curing methods. Science of the Total Environment, 843, 157004. https://doi.org/10.1016/j.scitotenv.2022.157004

    Article  CAS  Google Scholar 

  99. Bouzar, B., & Mamindy-Pajany, Y. (2022). Manufacture and characterization of carbonated lightweight aggregates from waste paper fly ash. Powder Technology, 406, 117583. https://doi.org/10.1016/j.powtec.2022.117583

    Article  CAS  Google Scholar 

  100. Han, S., Song, Y., Ju, T., Meng, Y., Meng, F., Song, M., Lin, L., Liu, M., Li, J., & Jiang, J. (2022). Recycling municipal solid waste incineration fly ash in super-lightweight aggregates by sintering with clay and using SiC as bloating agent. Chemosphere, 307, 135895. https://doi.org/10.1016/j.chemosphere.2022.135895

    Article  CAS  Google Scholar 

  101. Bai, Y., Guo, W., Wang, J., Xu, Z., Wang, S., Zhao, Q., & Zhou, J. (2022). Geopolymer bricks prepared by MSWI fly ash and other solid wastes: Moulding pressure and curing method optimisation. Chemosphere, 307, 135987. https://doi.org/10.1016/j.chemosphere.2022.135987

    Article  CAS  Google Scholar 

  102. Lv, Y., Yang, L., Wang, J., Zhan, B., Xi, Z., Qin, Y., & Liao, D. (2022). Performance of ultra-high-performance concrete incorporating municipal solid waste incineration fly ash. Case Studies in Construction Materials, 17, e01155. https://doi.org/10.1016/j.cscm.2022.e01155

    Article  Google Scholar 

  103. Chen, H., Liu, Y., Cui, H., Zhang, W., Hu, L., & Mao, L. (2022). Effects of electric arc furnace slag on promoting quality and environmental safety of fired bricks incorporating municipal solid waste incineration fly ash. Construction and Building Materials, 345, 128327. https://doi.org/10.1016/j.conbuildmat.2022.128327

    Article  Google Scholar 

  104. Nguyen, H. A., Chang, T. P., Chen, C. T., & Huang, T. Y. (2022). Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash. Construction and Building Materials, 346, 128274. https://doi.org/10.1016/j.conbuildmat.2022.128274

    Article  CAS  Google Scholar 

  105. Zhang, J., Zhang, X., Yuan, J., Liu, B., Shen, H., Liu, J., & Zhang, S. (2022). Hierarchically porous glass–ceramics by alkaline activation and crystallization from municipal solid waste incineration ashes. Journal of Cleaner Production, 364. https://doi.org/10.1016/j.jclepro.2022.132693

  106. Moukannaa, S., Alzeer, M., Ramteke, D. D., Ohenoja, K., Roppo, J., Kinnunen, P., & Illikainen, M. (2022). Investigation of different paper mill ashes as potential supplementary cementitious materials. Journal of Cleaner Production, 363, 132583. https://doi.org/10.1016/j.jclepro.2022.132583

    Article  CAS  Google Scholar 

  107. Xiang, J., Qiu, J., Wang, F., Li, Z., & Gu, X. (2022). Utilization of bioactivated incineration bottom ash in cement binder for mortar harmless treatment and performance improvement. Journal of Building Engineering, 57, 104980. https://doi.org/10.1016/j.jobe.2022.104980

    Article  Google Scholar 

  108. Xiao, H., Li, K., Zhang, D., Tang, Z., Niu, X., Yi, L., Lin, Z., & Fu, M. (2022). Environmental, energy, and economic impact assessment of sludge management alternatives based on incineration. Journal of Environmental Management, 321, 115848. https://doi.org/10.1016/j.jenvman.2022.115848

    Article  CAS  Google Scholar 

  109. Zhao, Y., Zhan, J., Liu, G., Ren, Z., Zheng, M., Jin, R., Yang, L., Wang, M., Jiang, X., & Zhang, X. (2017). Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge. Waste Management, 61, 337–344. https://doi.org/10.1016/j.wasman.2016.12.008

    Article  CAS  Google Scholar 

  110. Jin, R., Zhan, J., Liu, G., Zhao, Y., Zheng, M., Yang, L., & Wang, M. (2017). Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste. Chemosphere, 174, 165–172. https://doi.org/10.1016/j.chemosphere.2017.01.115

    Article  CAS  Google Scholar 

  111. Wang, C., Yang, Z., Zhang, Y., Zhang, Z., & Cai, Z. (2018). PAHs and heavy metals in the surrounding soil of a cement plant co-processing hazardous waste. Chemosphere, 210, 247–256. https://doi.org/10.1016/j.chemosphere.2018.06.177

    Article  CAS  Google Scholar 

  112. Wang, H., Liao, Y., Ma, X., & Zeng, X. (2020). Numerical simulation of co-incineration of sewage sludge and municipal solid waste in municipal solid waste incinerator. E3S Web of Conferences, 194, 0–4. https://doi.org/10.1051/e3sconf/202019404019

    Article  CAS  Google Scholar 

  113. Assi, A., Bilo, F., Federici, S., Zacco, A., Depero, L. E., & Bontempi, E. (2020). Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Waste Management, 116, 147–156. https://doi.org/10.1016/j.wasman.2020.07.031

    Article  CAS  Google Scholar 

  114. Chen, M., Oshita, K., Takaoka, M., & Shiota, K. (2022). Co-incineration effect of sewage sludge and municipal solid waste on the behavior of heavy metals by phosphorus. Waste Management, 152, 112–117. https://doi.org/10.1016/j.wasman.2022.08.010

    Article  CAS  Google Scholar 

  115. Sun, Y., Chen, G., Yan, B., Cheng, Z., & Ma, W. (2020). Behaviour of mercury during co-incineration of sewage sludge and municipal solid waste. Journal of Cleaner Production, 253, 119969. https://doi.org/10.1016/j.jclepro.2020.119969

    Article  CAS  Google Scholar 

  116. Lan, D. Y., Zhang, H., Wu, T. W., Lü, F., Shao, L. M., & He, P. J. (2022). Repercussions of clinical waste co-incineration in municipal solid waste incinerator during COVID-19 pandemic. Journal of Hazardous Materials, 423, 127144. https://doi.org/10.1016/j.jhazmat.2021.127144

    Article  CAS  Google Scholar 

  117. Zhao, H., Liu, H. Q., Wei, G., Wang, H., Zhu, Y., Zhang, R., & Yang, Y. (2021). Comparative life cycle assessment of emergency disposal scenarios for medical waste during the COVID-19 pandemic in China. Waste Management, 126, 388–399. https://doi.org/10.1016/j.wasman.2021.03.034

    Article  CAS  Google Scholar 

  118. Cieślik, E., Konieczny, T., & Bobik, B. (2018). Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste. E3S Web of Conferences, 28. https://doi.org/10.1051/e3sconf/20182801008

  119. Gandon-Ros, G., Nuñez, S. S., Ortuño, N., Aracil, I., Gómez-Rico, M. F., & Conesa, J. A. (2021). A win–win combination to inhibit persistent organic pollutant formation via the co-incineration of polyvinyl chloride e-waste and sewage sludge. Polymers, 13, 1–17. https://doi.org/10.3390/polym13050835

    Article  CAS  Google Scholar 

  120. Wang, K., & Nakakubo, T. (2020). Comparative assessment of waste disposal systems and technologies with regard to greenhouse gas emissions: A case study of municipal solid waste treatment options in China. Journal of Cleaner Production, 260, 120827. https://doi.org/10.1016/j.jclepro.2020.120827

    Article  CAS  Google Scholar 

  121. Chen, H., Li, J., Liu, J., Li, T., Xu, G., & Liu, W. (2022). Thermodynamic and economic evaluation of a novel waste-to-energy design incorporating anaerobic digestion and incineration. Energy Conversion and Management, 252, 115083. https://doi.org/10.1016/j.enconman.2021.115083

    Article  Google Scholar 

  122. He, J., Hong, Y., Kong, L., Dan, Z., Lv, X., Chen, G., Tang, O., & Chen, D. (2022). Spatial distribution and management of the energy potential of municipal solid waste incineration: A case study of Lhasa, China. Journal of Environmental Management, 322, 116094. https://doi.org/10.1016/j.jenvman.2022.116094

    Article  Google Scholar 

  123. Wen, Z., Chen, C., Ai, N., Bai, W., Zhang, W., & Wang, Y. (2019). Environmental impact of carbon cross-media metabolism in waste management: A case study of municipal solid waste treatment systems in China. Science of the Total Environment, 674, 512–523. https://doi.org/10.1016/j.scitotenv.2019.04.154

    Article  CAS  Google Scholar 

  124. Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 203, 287–300. https://doi.org/10.1016/j.jclepro.2018.08.139

    Article  CAS  Google Scholar 

  125. Zhou, Q., Xu, M., Liu, Y., Cui, C., Xia, B., Ke, Y., & Skitmore, M. (2022). Exploring the effects of spatial distance on public perception of waste-to-energy incineration projects. Waste Management, 143, 168–176. https://doi.org/10.1016/j.wasman.2022.02.033

    Article  Google Scholar 

  126. Zhang, X., & Hamel, P. (2021). Thinking of anti-incineration protests in strategic action fields: Three case studies in Mainland China. Local Environment, 26, 673–691. https://doi.org/10.1080/13549839.2021.1916897

    Article  Google Scholar 

  127. Ji, G., Chen, Q., Ding, Z., Gu, J., Guo, M., Shi, L., Yu, H., & Sun, H. (2022). High mortality and high PCDD/Fs exposure among residents downwind of municipal solid waste incinerators: A case study in China. Environmental Pollution, 294, 118635. https://doi.org/10.1016/j.envpol.2021.118635

    Article  CAS  Google Scholar 

  128. Li, P., Wang, X., Zou, X., Yu, Z., Li, J., Yang, Y., & Zhang, H. (2019). Metallic contamination in soils around a municipal solid waste incineration site: A case study in Northeast China. Environmental Science and Pollution Research, 26, 26339–26350. https://doi.org/10.1007/s11356-019-05763-1

    Article  CAS  Google Scholar 

  129. Miao, J., Li, J., Wang, F., Xia, X., Deng, S., & Zhang, S. (2022). Characterization and evaluation of the leachability of bottom ash from a mobile emergency incinerator of COVID-19 medical waste: A case study in Huoshenshan Hospital, Wuhan, China. Journal of Environmental Management, 303, 114161. https://doi.org/10.1016/j.jenvman.2021.114161

    Article  CAS  Google Scholar 

  130. Xu, Z., Sun, H., Li, X., & Motoda, E. (2019). A new solution for destruction of PCDD/Fs by a catalytic filter system at waste incinerators. E3S Web of Conferences, 118. https://doi.org/10.1051/e3sconf/201911804046

  131. Yang, X., Guo, X., & Yang, K. (2021). Redesigning the municipal solid waste supply chain considering the classified collection and disposal: A case study of incinerable waste in Beijing. Sustainability (Switzerland), 13, 1–20. https://doi.org/10.3390/su13179855

    Article  Google Scholar 

  132. Jung, J. M., Lee, T., Jung, S., Tsang, Y. F., Bhatnagar, A., Lee, S. S., Song, H., Park, W. K., & Kwon, E. E. (2022). Control of the fate of toxic pollutants from catalytic pyrolysis of polyurethane by oxidation using CO2. Chemical Engineering Journal, 442, 136358. https://doi.org/10.1016/j.cej.2022.136358

    Article  CAS  Google Scholar 

  133. Kang, S., Roh, J., & Jeon, E. C. (2020). Seasonal variation analysis method of GHG at municipal solid waste incinerator. Sustainability (Switzerland), 12, 1–11. https://doi.org/10.3390/SU12187425

    Article  Google Scholar 

  134. Istrate, I. R., Galvez-Martos, J. L., & Dufour, J. (2021). The impact of incineration phase-out on municipal solid waste landfilling and life cycle environmental performance: Case study of Madrid, Spain. Science of the Total Environment, 755, 142537. https://doi.org/10.1016/j.scitotenv.2020.142537

    Article  CAS  Google Scholar 

  135. Bandarra, B. S., Pereira, J. L., Martins, R. C., Maldonado-Alameda, A., Chimenos, J. M., & Quina, M. J. (2021). Opportunities and barriers for valorizing waste incineration bottom ash: Iberian countries as a case study. Applied Sciences (Switzerland), 11. https://doi.org/10.3390/app11209690

  136. Pivato, A., Girotto, F., Megido, L., & Raga, R. (2018). Estimation of global warming emissions in waste incineration and landfilling: An environmental forensic case study. Environmental Forensics, 19, 253–264. https://doi.org/10.1080/15275922.2018.1519741

    Article  CAS  Google Scholar 

  137. Bujak, J., Sitarz, P., & Pasela, R. (2021). Possibilities for reducing Co and Toc emissions in thermal waste treatment plants: A case study. Energies, 14. https://doi.org/10.3390/en14102901

  138. Durdevic, D., Zikovic, S., & Blecich, P. (2022). Sustainable sewage sludge management technologies selection based on techno-economic-environmental criteria: Case study of Croatia. Energies, 15. https://doi.org/10.3390/en15113941

  139. Lee, C. J., Chang, L., & Tan, J. (2022). Environmental sustainability framework for plastic waste management—A case study of Bubble Tea Industry in Malaysia. Process Integration and Optimization for Sustainability, 6, 513–526. https://doi.org/10.1007/s41660-022-00230-w

    Article  Google Scholar 

  140. Norman, A. A. R. B., Hussein, B. N. B., & Ali, C. F. I. B. M. (2020). Incineration of ammonia wastewater and the effect to the environment. In Proceedings of the IOP conference series: Materials science and engineering (Vol. 778, p. 012122).

    Google Scholar 

  141. Paul, B. (2021). Reviewing the suitability of thermal technologies for Malaysia’s solid waste management. Journal of Sustainability Science and Management, 16, 91–104. https://doi.org/10.46754/jssm.2021.12.007

    Article  CAS  Google Scholar 

  142. Yadav, P., & Samadder, S. R. (2018). Assessment of applicability index for better management of municipal solid waste: A case study of Dhanbad, India. Environmental Technology (United Kingdom), 39, 1481–1496. https://doi.org/10.1080/09593330.2017.1332104

    Article  CAS  Google Scholar 

  143. Liu, P., Rani, P., & Mishra, A. R. (2021). A novel Pythagorean Fuzzy combined compromise solution framework for the assessment of medical waste treatment technology. Journal of Cleaner Production, 292, 126047. https://doi.org/10.1016/j.jclepro.2021.126047

    Article  Google Scholar 

  144. Thakur, V., & Anbanandam, R. (2017). Management practices and modeling the seasonal variation in health care waste: A case study of Uttarakhand, India. Journal of Modelling in Management, 12, 162–174. https://doi.org/10.1108/JM2-08-2015-0058

    Article  Google Scholar 

  145. Singh, D., Aryan, Y., Chavan, D., Tembhare, M., Dikshit, A. K., & Kumar, S. (2022). Mask consumption and biomedical waste generation rate during Covid-19 pandemic: A case study of Central India. Environmental Research, 212, 113363. https://doi.org/10.1016/j.envres.2022.113363

    Article  CAS  Google Scholar 

  146. Manupati, V. K., Ramkumar, M., Baba, V., & Agarwal, A. (2021). Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. Journal of Cleaner Production, 281, 125175. https://doi.org/10.1016/j.jclepro.2020.125175

    Article  CAS  Google Scholar 

  147. Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K. (2017). Wing modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148, 427–440. https://doi.org/10.1016/j.jclepro.2017.01.172

    Article  CAS  Google Scholar 

  148. Ghasemi, A., & Moghaddam, M. (2020). Thermodynamic and environmental comparative investigation and optimization of landfill vs. incineration for municipal solid waste: A case study in Varamin, Iran. Journal of Thermal Engineering, 6, 226–246. https://doi.org/10.18186/THERMAL.820234

    Article  Google Scholar 

  149. Zarea, M. A., Moazed, H., Ahmadmoazzam, M., Malekghasemi, S., & Jaafarzadeh, N. (2019). Life cycle assessment for municipal solid waste management: A case study from Ahvaz, Iran. Environmental Monitoring and Assessment, 191. https://doi.org/10.1007/s10661-019-7273-y

  150. Amirudin, A., Inoue, C., & Grause, G. (2022). Analyzing polyethylene Terephthalate bottle waste technology using an analytic hierarchy process for developing countries: A case study from Indonesia. Recycling, 7, 58.

    Article  Google Scholar 

  151. Ngamsang, T., & Yuttitham, M. (2019). Vulnerability assessment of areas allocated for municipal solid waste disposal systems: A case study of sanitary landfill and incineration. Environmental Science and Pollution Research, 26, 27239–27258. https://doi.org/10.1007/s11356-019-05920-6

    Article  CAS  Google Scholar 

  152. de Oliveira, F., Leite, F., Escobar Palacio, J. C., Arcanjo Batista, M. J., & Grillo Renó, M. L. (2022). Evaluation of technological alternatives for the treatment of urban solid waste: A case study of Minas Gerais, Brazil. Journal of Cleaner Production, 330. https://doi.org/10.1016/j.jclepro.2021.129618

  153. de Medeiros Engelmann, P., dos Santos, V. H. J. M., da Rocha, P. R., dos Santos, G. H. A., Lourega, R. V., de Lima, J. E. A., & Pires, M. J. R. (2022). Analysis of solid waste management scenarios using the WARM model: Case study. Journal of Cleaner Production, 345, 130687. https://doi.org/10.1016/j.jclepro.2022.130687

    Article  Google Scholar 

  154. Agbejule, A., Shamsuzzoha, A., Lotchi, K., & Rutledge, K. (2021). Application of multi-criteria decision-making process to select waste-to-energy technology in developing countries: The case of Ghana. Sustainability (Switzerland), 13. https://doi.org/10.3390/su132212863

  155. Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031

    Article  Google Scholar 

  156. Nakatsuka, N., Kishita, Y., Kurafuchi, T., & Akamatsu, F. (2020). Integrating wastewater treatment and incineration plants for energy-efficient urban biomass utilization: A life cycle analysis. Journal of Cleaner Production, 243, 118448. https://doi.org/10.1016/j.jclepro.2019.118448

    Article  CAS  Google Scholar 

  157. Samarasinghe, K., & Wijayatunga, P. D. C. (2022). Techno-economic feasibility and environmental sustainability of waste-to-energy in a circular economy: Sri Lanka case study. Energy for Sustainable Development, 68, 308–317. https://doi.org/10.1016/j.esd.2022.04.005

    Article  Google Scholar 

  158. Industrial Furnace Company (IFCO), Fluidized Bed Incinerators 101. Available online at https://www.industrialfurnace.com/fbi-101. Accessed date 21 July 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Anuar Kamaruddin .

Editor information

Editors and Affiliations

Glossary

Combined heat and power

The concurrent production of electricity or mechanical power and useful thermal energy from a single source of energy

Confederation of European Waste-to-Energy Plants

The umbrella association of the operators of waste-to-energy plants, representing about 400 plants from 22 countries

Dictionary of Occupational Titles

A publication produced by the United States Department of Labor which helped employers, government officials, and workforce development professional

Environmental Protection Agency

An independent executive agency of the United States federal government tasked with environmental protection matters

European Environmental Bureau

A network of around 170 environmental citizens’ organizations based in more than 35 countries

Occupational Safety and Health Administration

A large regulatory agency of the United States Department of Labor that originally had federal visitorial powers to inspect and examine workplaces

Resource Conservation and Recovery Act

The principal federal law in the United States governing the disposal of solid waste and hazardous waste

Toxicity Characteristic Leaching Procedure

A chemical analysis process used to determine whether there are hazardous elements present in the waste

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamaruddin, M.A. et al. (2024). Treatment and Management of Hazardous Solid Waste Stream by Incineration. In: Wang, L.K., Sung Wang, MH., Hung, YT. (eds) Waste Treatment in the Biotechnology, Agricultural and Food Industries. Handbook of Environmental Engineering, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-44768-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44768-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44767-9

  • Online ISBN: 978-3-031-44768-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics