Skip to main content

Innovative Technologies for the Maritime Industry: Hydrogen Fuel as a Promising Direction

  • Chapter
  • First Online:
Modern Technologies in Energy and Transport

Abstract

The shipping industry is a significant source of global greenhouse gas emissions, so finding sustainable and low-carbon alternative fuels is crucial to reducing its environmental impact. Hydrogen is emerging as a promising fuel for the shipping industry due to its high energy density, zero emissions and the possibility of production from renewable sources. However, the use of hydrogen as a fuel in shipping requires significant infrastructure development and technological advances in hydrogen production, storage and transportation. In addition, the cost and availability of hydrogen fuel remain the main barriers to its widespread adoption in shipping. Despite these challenges, the potential benefits of using hydrogen as a sustainable fuel for shipping make it an area of growing interest and investment. Hydrogen fuel is increasingly becoming a promising alternative to traditional fossil fuels for ships. It is a clean and renewable energy source that produces only water vapor as a byproduct, making it a desirable solution for reducing greenhouse gas emissions and mitigating climate change. Hydrogen can be used as a zero-emission fuel, but the production of the gas itself is not a low-carbon process if fossil fuels are used to produce it. Nevertheless, experts believe that hydrogen is a fuel solution for shipping. Even today, leading scientists, experienced ship operation, and design professionals are calling for the wider use of hydrogen as a fuel, which will ultimately help the maritime industry achieve its goal of reducing emissions using non-fossil fuels. This article explores the potential of hydrogen fuel for ships, including its benefits, challenges and current status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Solakivi, T., Paimander, A., Ojala, L.: Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transp. Res. Part D: Transp. Environ. 113, 103500 (2022). https://doi.org/10.1016/j.trd.2022.103500

    Article  Google Scholar 

  2. Kouzelis, K., Frouws, K., van Hassel, E.: Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels. J. Shipp. Trade 7 (2022). https://doi.org/10.1186/s41072-022-00124-7

  3. Huang, J., Fan, H., Xu, X., Liu, Z.: Life cycle greenhouse gas emission assessment for using alternative marine fuels: a Very Large Crude Carrier (VLCC) case study. J. Marine Sci. Eng. 10, 1969 (2022). https://doi.org/10.3390/jmse10121969

    Article  Google Scholar 

  4. Heine, D., GGde, S., Dominioni, G.: Unilaterally removing indirect subsidies for maritime fuel. SSRN Electron. J. (2014). https://doi.org/10.2139/ssrn.2512747

  5. Md Moshiul, A., Mohammad, R., Hira, F., Maarop, N.: Alternative marine fuel research advances and future trends: a bibliometric knowledge mapping approach. Sustainability 14 (2022). https://doi.org/10.3390/su14094947

  6. Pekşen, D., Alkan, G.: Application of Alternative Maritime Power (AMP) supply to cruise port. J. ETA Marit. Sci. 6, 307–318 (2018). https://doi.org/10.5505/jems.2018.15870

    Article  Google Scholar 

  7. Benet, Á., Villalba-Herreros, A., d’Amore-Domenech, R., Leo, T.J.: Knowledge gaps in fuel cell-based maritime hybrid power plants and alternative fuels. J. Power. Sources 548, 232066 (2022). https://doi.org/10.1016/j.jpowsour.2022.232066

    Article  Google Scholar 

  8. Barberi, S., Campisi, T., Neduzha, L.: The role of cold ironing in maritime transport emissions. In: AIP Conference Proceedings, vol. 2611, pp. 060013 (2022). https://doi.org/10.1063/5.0119881

  9. Wang, Q., Zhang, H., Huang, J., Zhang, P.: The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. Front. Marine Sci. 9 (2023). https://doi.org/10.3389/fmars.2022.1082453

  10. Burmaka, I., Vorokhobin I., Melnyk, O., Burmaka, O., Sagin, S.: Method of prompt evasive maneuver selection to alter ship's course or speed. Trans. Marit. Sci. 11(1) (2022). https://doi.org/10.7225/toms.v11.n01.w01.

  11. Onyshchenko, S., Melnyk, O.: Probabilistic assessment method of hydrometeorological conditions and their impact on the efficiency of ship operation. J. Eng. Sci. Technol. Rev. 14(6), 132–136 (2021). https://doi.org/10.25103/jestr.146.15

  12. Onyshchenko, S., Melnyk, O.: Efficiency of ship operation in transportation of oversized and heavy cargo by optimizing the speed mode considering the impact of weather conditions. Transp. Telecommun. J. 23(1), 73–80 (2022). https://doi.org/10.2478/ttj-2022-0007

    Article  Google Scholar 

  13. Melnyk, O., Bychkovsky, Y., Voloshyn, A.: Maritime situational awareness as a key measure for safe ship operation. Sci. J. Silesian Univ. Technol. 114, 91–101. ISSN: 0209-3324 (2022). https://doi.org/10.20858/sjsutst.2022.114.8

  14. Melnyk, O., Onyshchenko S.: Ensuring safety of navigation in the aspect of reducing environmental impact. In: ISEM 2021, LNNS, vol. 463, pp. 1–9 (2022). https://doi.org/10.1007/978-3-031-03877-8_9

  15. Melnyk, O., Onishchenko, O., Onyshchenko, S., Golikov, V., Sapiha, V., Shcherbina, O., Andrievska, V.: Study of environmental efficiency of ship operation in terms of freight transportation effectiveness provision. TransNav, Int. J. Marine Navig. Saf. Sea Transp. 16(4), 723–729 (2022). https://doi.org/10.12716/1001.16.04.14

    Article  Google Scholar 

  16. Onishchenko, O., Golikov, V., Melnyk, O., Onyshchenko, S., Obertiur, K.: Technical and operational measures to reduce greenhouse gas emissions and improve the environmental and energy efficiency of ships. Sci. J. Silesian Univ. Technol. 116, 223–235 (2022). https://doi.org/10.20858/sjsutst.2022.116.14.

  17. Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Kalinichenko, Y., Rossomakha, O., Naleva, G., Rossomakha, O.: Autonomous ships concept and mathematical models application in their steering process control. TransNav. 16(3), 553–559 (2022). https://doi.org/10.12716/1001.16.03.18

    Article  Google Scholar 

  18. Melnyk, O. Onyshchenko, S.: Navigational safety assessment based on Markov-model approach. Sci. J. Marit. Res. 36(2), 328–337 (2022). https://doi.org/10.31217/p.36.2.16

  19. Melnyk, O. Onyshchenko, S., Onishchenko O., Lohinov O., Ocheretna V.: Integral approach to vulnerability assessment of ship’s critical equipment and systems. Trans. Marit. Sci. 12(1) (2023)

    Google Scholar 

  20. Melnyk, O., Onyshchenko, S., Koryakin, K.: Nature and origin of major security concerns and potential threats to the shipping industry. Sci. J. Silesian Univ. Technol. 113, 145–153 (2021). https://doi.org/10.20858/sjsutst.2021.113.11

  21. Onishchenko, O., Shumilova, K., Volyanskyy, S., Volyanskaya, Y., Volianskyi, Y.: Ensuring cyber resilience of ship information systems. TransNav, Int. J. Marine Navig. Saf. Sea Transp. 16(1), 43–50 (2022). https://doi.org/10.12716/1001.16.01.04

    Article  Google Scholar 

  22. Melnyk, O., Onyshchenko, S., Onishchenko, O., Shumylo, O., Voloshyn, A., Koskina, Y., Volianska, Y.: Review of ship information security risks and safety of maritime transportation issues. TransNav, Int. J. Marine Navig. Saf. Sea Transp. 16(4), 717–722 (2022). https://doi.org/10.12716/1001.16.04.13

    Article  Google Scholar 

  23. Malaksiano, N.: On the stability of economic indicators of complex port equipment usage. Actual Probl. Econ. 138(12), 226–233 (2012)

    Google Scholar 

  24. Lapkina, I., Malaksiano, M., Malaksiano, M.: Optimization of the structure of sea port equipment fleet under unbalanced load. Actual Probl. Econ. 183(9), 364–371 (2016)

    Google Scholar 

  25. Yakovlieva, A., Boichenko, S.: Energy efficient renewable feedstock for alternative motor fuels production: solutions for Ukraine. Stud. Syst. Decis. Control 298, 247–259 (2020). https://doi.org/10.1007/978-3-030-48583-2_16

    Article  Google Scholar 

  26. Minchev, D., Varbanets, R., Aleksandrovskaya, N., Pisintsaly, L.: Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytech. 3(61), 428–440 (2021). https://doi.org/10.14311/AP.2021.61.0435

    Article  Google Scholar 

  27. Yeryganov, O., Varbanets, R.: Features of the fastest pressure growth point during compression stroke. Diagnostyka 19(2), 71–76 (2018). https://doi.org/10.29354/diag/89729

    Article  Google Scholar 

  28. Alternative Fuels and Technologies for Greener Shipping: DNV GL. Summary of an assessment of selected alternative fuels and technologies (2018). https://www.dnv.com

  29. Maritime Safety Agency: Update on potential of biofuels in shipping. EMSA, Lisbon. (2022). https://www.emsa.europa.eu/publications/reports/item/4834-update-on-potential-of-biofuels-for-shipping.html

  30. Li, Y., Wei, W., Li, Y., Huang, T.: Research on the optimization of ship propulsion system based on hydrogen fuel. J. Marine Sci. Eng. 9(3), 278 (2021)

    Google Scholar 

  31. Kulkarni, P., Shah, P., Kulkarni, P.: Fuel cell technology for maritime applications. Int. J. Marit. Eng. 162(1), 55–64 (2020)

    Google Scholar 

  32. Chen, J., Zhang, H., Liu, B.: Energy efficiency optimization of a hydrogen-powered container ship. J. Marine Sci. Eng. 7(10), 318 (2019)

    Google Scholar 

  33. Ghafir, M.F.A., Harahap, I.S.H., Taufik, T.: Technical and economic feasibility analysis of hydrogen fuel cell power plant for Indonesian ferry. Int. J. Renew. Energy Res. 8(3), 1361–1371 (2018)

    Google Scholar 

  34. Chen, H., Zhang, X., Wu, Y., Huang, Y.: A review of research on hydrogen energy storage technology. Int. J. Hydrog. Energy 42(20), 14345–14363 (2017)

    Google Scholar 

  35. Hoang, D.L., Kim, T., Lee, K.: Hydrogen fuel cell systems for ships: a review. J. Clean. Prod. 246, 119025 (2020). https://doi.org/10.1016/j.jclepro.2019.119025

    Article  Google Scholar 

  36. Konold, W.E.: Maritime energy transition: hydrogen fuel cells as a future alternative for shipping. Transp. Policy 89, 50–58 (2020). https://doi.org/10.1016/j.tranpol.2020.04.007

    Article  Google Scholar 

  37. Li, Y., Li, P.: Feasibility analysis of hydrogen energy application in shipping industry. Energy Procedia 187, 50–55 (2020). https://doi.org/10.1016/j.egypro.2020.07.015

    Article  Google Scholar 

  38. Schmieder, P., Krieg, O.: Perspectives of hydrogen use for ship propulsion. J. Marine Sci. Eng. 8(12), 994 (2020). https://doi.org/10.3390/jmse8120994

    Article  Google Scholar 

  39. Su, H., Peng, H., Lin, Y., Wang, Z.: Investigation of hydrogen fuel cell ships considering different operation modes. Int. J. Hydrog. Energy 45(50), 27676–27684 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy Melnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnyk, O. et al. (2024). Innovative Technologies for the Maritime Industry: Hydrogen Fuel as a Promising Direction. In: Boichenko, S., Zaporozhets, A., Yakovlieva, A., Shkilniuk, I. (eds) Modern Technologies in Energy and Transport. Studies in Systems, Decision and Control, vol 510. Springer, Cham. https://doi.org/10.1007/978-3-031-44351-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44351-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44350-3

  • Online ISBN: 978-3-031-44351-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics