Skip to main content

Advanced Perovskite Solar Cells

  • Chapter
  • First Online:
Advanced Ceramics

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 230 Accesses

Abstract

The energy crisis is a huge challenge facing the world today. Natural resources such as coal and oil are consumed in large quantities and their reserves are gradually decreasing. It is imperative to advocate energy conservation. Meantime, it is very important to develop green and clean energy. Solar energy has become one of the most promising green energy sources in recent years because of its sustainable and safe advantages. Solar energy can be converted into effective energy such as heat energy through photoelectric conversion because it doesn’t produce harmful gases, solid waste, and other pollutants in the conversion process. In addition, the new solar cells have the advantages of low cost, cleanliness, and they are efficient. Since 2009, a new type of perovskite solar cell has developed rapidly. In order to further improve the photoelectric conversion efficiency of batteries, more researchers in recent years have tried to apply new ceramic materials (perovskite materials) to batteries, and have achieved remarkable results. Relevant research reports show exponential growth. Perovskite solar cells use crystals with perovskite structure as electron transfer materials to improve the light absorption efficiency of the solar cells. Studies show that the structure and performance of the electron transfer layer directly affect the stability and life of the battery, which proves that the appropriate electron transfer layer is very important. New perovskite ceramic materials have been widely used in solar cell devices. This chapter mainly introduces the most common perovskite thin films and their preparation methods, organic–inorganic perovskite solar cells, etc., focusing on their development status, and the main factors affecting their stability. Finally, the current problems and development prospects in the research and application of perovskite solar cells are introduced, which will lay a solid foundation for the deeper understanding of perovskite solar cells and the preparation of new and efficient ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020). https://doi.org/10.1016/j.solener.2020.01.080

  2. A. ToshniwalV, Kheraj, development of organic-inorganic tin halide perovskites: a review. Sol. Energy 149, 54–59 (2017). https://doi.org/10.1016/j.solener.2017.03.077

    Article  CAS  Google Scholar 

  3. N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007

    Article  CAS  Google Scholar 

  4. Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: Review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photon. Energy. 6 (2016). https://doi.org/10.1117/1.Jpe.6.022001

  5. K.u.c. Zusammensetzung, Krystallbau und chemische zusammensetzung. Ber. Dtsch. Chem. Ges. 60, 1263–1268 (1927)

    Google Scholar 

  6. M.A. Green, A. Ho-BaillieH, J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  7. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of abx3 (x = f, cl, br, i) halide perovskites. Acta Crystallogr. B 64, 702–707 (2008). https://doi.org/10.1107/S0108768108032734

    Article  CAS  Google Scholar 

  8. N.K. McKinnon, D.C. ReevesM, H. Akabas, 5-ht3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J. Gen. Physiol. 138, 453–466 (2011). https://doi.org/10.1085/jgp.201110686

    Article  CAS  Google Scholar 

  9. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energ. Environ. Sci. 10, 710–727 (2017). https://doi.org/10.1039/c6ee03397k

  10. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  11. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 3, 4088–93 (2011). https://doi.org/10.1039/c1nr10867k

  12. H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile tio2 nanorod and ch3nh3pbi3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013). https://doi.org/10.1021/nl400286w

    Article  CAS  Google Scholar 

  13. J. A. Christians, R. C. FungP. V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–64 (2014). https://doi.org/10.1021/ja411014k

  14. M. Hou, H. Zhang, Z. Wang, Y. Xia, Y. Chen, W. Huang, Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS. Appl. Mater. Inter. 10, 30607–30613 (2018). https://doi.org/10.1021/acsami.8b10332

    Article  CAS  Google Scholar 

  15. M.M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, S.M. Zakeeruddin, M. Grätzel, Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv. Energy. Mater. 9 (2019). https://doi.org/10.1002/aenm.201802646

  16. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  17. J. Tong, Z. Song, D.H. Kim, X. Chen, C. Chen, A.F. Palmstrom, P.F. Ndione, M.O. Reese, S.P. Dunfield, O.G. Reid, J. Liu, F. Zhang, S.P. Harvey, Z. Li, S.T. Christensen, G. Teeter, D. Zhao, M.M. Al-Jassim, M. van Hest, M.C. Beard, S.E. Shaheen, J.J. Berry, Y. Yan, K. Zhu, Carrier lifetimes of >1 mus in sn-pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019). https://doi.org/10.1126/science.aav7911

    Article  CAS  Google Scholar 

  18. K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, and H. Tan, All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy. 5 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5

  19. E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E.W.-G. Diau, Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energ. Environ. Sci. 11, 2353–2362 (2018). https://doi.org/10.1039/c8ee00956b

    Article  CAS  Google Scholar 

  20. K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, and S. Hayase, Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy. 74 (2020). https://doi.org/10.1016/j.nanoen.2020.104858

  21. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed sn and pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014). https://doi.org/10.1021/ja5033259

    Article  CAS  Google Scholar 

  22. R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, and H. Tan, Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn(ii) oxidation in precursor ink. Nat. Energy. 4 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3

  23. J.G. BednorzK, A. Müller, Perovskite-type oxides—the new approach to high-tcsuperconductivity. Rev. Mod. Phys. 60, 585–600 (1988). https://doi.org/10.1103/RevModPhys.60.585

    Article  Google Scholar 

  24. T. Zhang, Y. Zhao, Recent progress of lead halide perovskite sensitized solar cells. Acta Chim. Sinica. 73 (2015). https://doi.org/10.6023/a14090656

  25. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  26. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  27. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014). https://doi.org/10.1021/ja411509g

    Article  CAS  Google Scholar 

  28. M. Liu, M.B. JohnstonH, J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  29. S. C. Watthage, Z. Song, A. B. Phillips, and M. J. Heben, Evolution of perovskite solar cells, in Perovskite photovoltaics. ed. by S.Thomas, and A. Thankappan (Academic Press, 2018),pp. 43–88.

    Google Scholar 

  30. C.-H. Chiang, J.-W. LinC.-G. Wu, One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. J. Mater. Chem. A. 4 13525–13533 (2016).https://doi.org/10.1039/c6ta05209f

  31. H. Shen, Y. Wu, J. Peng, T. Duong, X. Fu, C. Barugkin, T.P. White, K. Weber, K.R. Catchpole, Improved reproducibility for perovskite solar cells with 1 cm(2) active area by a modified two-step process. ACS. Appl. Mater. Inter. 9, 5974–5981 (2017). https://doi.org/10.1021/acsami.6b13868

    Article  CAS  Google Scholar 

  32. K. Wang, C. Liu, P. Du, J. Zheng, X. Gong, Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energ. Environ. Sci. 8, 1245–1255 (2015). https://doi.org/10.1039/c5ee00222b

    Article  CAS  Google Scholar 

  33. K. Mahmood, S. SarwarM, T. Mehran, Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 7, 17044–17062 (2017). https://doi.org/10.1039/c7ra00002b

    Article  CAS  Google Scholar 

  34. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized tio(2) with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885

    Article  CAS  Google Scholar 

  35. D.-F. Zhang, L.-L. Zheng, Y.-Z. Ma, S.-F. Wang, Z.-Q. Bian, C.-H. Huang, Q.-H. Gong, and L.-X. Xiao, Factors influencing the stability of perovskite solar cells. Acta Phys. Sin. 64, (2015). https://doi.org/10.7498/aps.64.038803

  36. G. Niu, X. GuoL, Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A. 3, 8970–8980 (2015). https://doi.org/10.1039/c4ta04994b

    Article  CAS  Google Scholar 

  37. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Ad. Mater. 26, 1584–1589 (2014). https://doi.org/10.1002/adma.201305172

    Article  CAS  Google Scholar 

  38. G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A. 4, 3970–3990 (2016). https://doi.org/10.1039/c5ta09011c

    Article  CAS  Google Scholar 

  39. J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, Low-temperature sno2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A. 3, 10837–10844 (2015). https://doi.org/10.1039/c5ta01207d

    Article  CAS  Google Scholar 

  40. K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, Highly efficient perovskite solar cells based on a nanostructured wo3–tio2core–shell electron transporting material. J. Mater. Chem. A. 3, 9051–9057 (2015). https://doi.org/10.1039/c4ta04883k

    Article  CAS  Google Scholar 

  41. H. Zheng, Y. TachibanaK, Kalantar-Zadeh, Dye-sensitized solar cells based on wo3. Langmuir 26, 19148–19152 (2010). https://doi.org/10.1021/la103692y

    Article  CAS  Google Scholar 

  42. A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K. Jen, H.J. Snaith, High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013). https://doi.org/10.1021/nl401044q

    Article  CAS  Google Scholar 

  43. A.A. Said, J. XieQ, Zhang, Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15, e1900854 (2019). https://doi.org/10.1002/smll.201900854

    Article  CAS  Google Scholar 

  44. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014). https://doi.org/10.1039/c3ee43161d

    Article  CAS  Google Scholar 

  45. Y. Ogomi, K. Kukihara, S. Qing, T. Toyoda, K. Yoshino, S. Pandey, H. Momose, S. Hayase, Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. ChemPhysChem 15, 1062–1069 (2014). https://doi.org/10.1002/cphc.201301153

    Article  CAS  Google Scholar 

  46. S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of sb2s3 on nanocrystalline tio2 for ch3nh3pbi3 perovskite solar cells. J. Phys. Chem. C 118, 16995–17000 (2014). https://doi.org/10.1021/jp500449z

    Article  CAS  Google Scholar 

  47. H.-K. Ting, L. Ni, S.-B. Ma, Y.-Z. Ma, L.-X. Xiao, and Z.-J. Chen, Progress in electron-transport materials in application of perovskite solar cells. Acta Phys. Sin. 64, (2015). https://doi.org/10.7498/aps.64.038802

  48. Y. Wang, Y. Hu, D. Han, Q. Yuan, T. Cao, N. Chen, D. Zhou, H. Cong, L. Feng, Ammonia-treated graphene oxide and pedot: Pss as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron. 70, 63–70 (2019). https://doi.org/10.1016/j.orgel.2019.03.048

    Article  CAS  Google Scholar 

  49. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 345, 542–6 (2014). https://doi.org/10.1126/science.1254050

  50. M.K. Rao, D.N. Sangeetha, M. Selvakumar, Y.N. Sudhakar, M.G. Mahesha, Review on persistent challenges of perovskite solar cells’ stability. Sol. Energy 218, 469–491 (2021). https://doi.org/10.1016/j.solener.2021.03.005

    Article  CAS  Google Scholar 

  51. X. Yao, Y.-L. Ding, X.-D. Zhang, and Y. Zhao, A review of the perovskite solar cells. Acta Phys. Sin. 64, (2015). https://doi.org/10.7498/aps.64.038805

  52. K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Gratzel, Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613

    Article  CAS  Google Scholar 

  53. Q. Wei, H. Bi, S. Yan, and S. Wang, Morphology and interface engineering for organic metal halide perovskite-based photovoltaic cells. Adv. Mater. Interfaces. 5, (2018). https://doi.org/10.1002/admi.201800248

  54. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  55. Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, and T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energ. Environ. Sci. 7, (2014). https://doi.org/10.1039/c3ee44174a

  56. Q. Zhao, R. Wu, Z. Zhang, J. Xiong, Z. He, B. Fan, Z. Dai, B. Yang, X. Xue, P. Cai, S. Zhan, X. Zhang, J. Zhang, Achieving efficient inverted planar perovskite solar cells with nondoped ptaa as a hole transport layer. Org. Electron. 71, 106–112 (2019). https://doi.org/10.1016/j.orgel.2019.05.019

    Article  CAS  Google Scholar 

  57. P. K. Kung, M. H. Li, P. Y. Lin, Y. H. Chiang, C. R. Chan, T. F. Guo, and P. Chen, A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces. 5, (2018). https://doi.org/10.1002/admi.201800882

  58. K.M. Reza, A. Gurung, B. Bahrami, S. Mabrouk, H. Elbohy, R. Pathak, K. Chen, A.H. Chowdhury, M.T. Rahman, S. Letourneau, H.-C. Yang, G. Saianand, J.W. Elam, S.B. Darling, Q. Qiao, Tailored pedot: Pss hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. J. Energy Chem. 44, 41–50 (2020). https://doi.org/10.1016/j.jechem.2019.09.014

    Article  Google Scholar 

  59. C. ZuoL, Ding, Solution-processed cu2o and cuo as hole transport materials for efficient perovskite solar cells. Small 11, 5528–5532 (2015). https://doi.org/10.1002/smll.201501330

    Article  CAS  Google Scholar 

  60. J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230

    Article  CAS  Google Scholar 

  61. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  CAS  Google Scholar 

  62. H. Lei, P. Qin, W. Ke, Y. Guo, X. Dai, Z. Chen, H. Wang, B. Li, Q. Zheng, G. Fang, Performance enhancement of polymer solar cells with high work function cus modified ito as anodes. Org. Electron. 22, 173–179 (2015). https://doi.org/10.1016/j.orgel.2015.03.051

    Article  CAS  Google Scholar 

  63. J. A Christians,, R. C. Fung, P. V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am. Chem. Soc. 136(2), 758-764.(2014). https://doi.org/10.1021/ja411014k.

  64. B.A. Nejand, V. AhmadiH, R. Shahverdi, New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS. Appl. Mater. Inter. 7, 21807–21818 (2015). https://doi.org/10.1021/acsami.5b05477

    Article  CAS  Google Scholar 

  65. Q. Wali, F. J. Iftikhar, M. E. Khan, A. Ullah, Y. Iqbal, and R. Jose, Advances in stability of perovskite solar cells. Org. Electron. 78, (2020). https://doi.org/10.1016/j.orgel.2019.105590

  66. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014). https://doi.org/10.1021/nl500390f

    Article  CAS  Google Scholar 

  67. N. Rajamanickam, S. Kumari, V.K. Vendra, B.W. Lavery, J. Spurgeon, T. Druffel, M.K. Sunkara, Stable and durable ch3nh3pbi3 perovskite solar cells at ambient conditions. Nanotechnology 27, 235404 (2016). https://doi.org/10.1088/0957-4484/27/23/235404

    Article  CAS  Google Scholar 

  68. D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energ. Mat. Sol. C. 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025

    Article  CAS  Google Scholar 

  69. W.L. Leong, Z.E. Ooi, D. Sabba, C. Yi, S.M. Zakeeruddin, M. Graetzel, J.M. Gordon, E.A. Katz, N. Mathews, Identifying fundamental limitations in halide perovskite solar cells. Ad. Mater. 28, 2439–2445 (2016). https://doi.org/10.1002/adma.201505480

    Article  CAS  Google Scholar 

  70. T. Duong, Y. Wu, H. Shen, J. Peng, S. Zhao, N. Wu, M. Lockrey, T. White, K. Weber, K. Catchpole, Light and elevated temperature induced degradation (letid) in perovskite solar cells and development of stable semi-transparent cells. Sol. Energ. Mat. Sol. C. 188, 27–36 (2018). https://doi.org/10.1016/j.solmat.2018.08.017

    Article  CAS  Google Scholar 

  71. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy. Mater. 5 (2015). https://doi.org/10.1002/aenm.201501310

  72. S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H.J. Snaith, Improving the long-term stability of perovskite solar cells with a porous al2o3 buffer layer. J. Phys. Chem. Lett. 6, 432–437 (2015). https://doi.org/10.1021/jz502703p

    Article  CAS  Google Scholar 

  73. L. Qiu, L.K. OnoY, Qi, Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy. 7, 169–189 (2018). https://doi.org/10.1016/j.mtener.2017.09.008

    Article  Google Scholar 

  74. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, H. J. Snaith, Efficient ambient-air-stable solar cells with 2d–3d heterostructured butylammonium-caesium-formamidiniumd lead halide perovskites. Nat. Energy. 2 (2017). https://doi.org/10.1038/nenergy.2017.135

  75. G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, One-year stable perovskite solar cells by 2d/3d interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684

    Article  CAS  Google Scholar 

  76. S.G. Hashmi, A. Tiihonen, D. Martineau, M. Ozkan, P. Vivo, K. Kaunisto, V. Ulla, S.M. Zakeeruddin, M. Grätzel, Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A. 5, 4797–4802 (2017). https://doi.org/10.1039/c6ta10605f

    Article  CAS  Google Scholar 

  77. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

    Article  CAS  Google Scholar 

  78. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2d homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796

    Article  CAS  Google Scholar 

  79. J.M. Kadro, N. Pellet, F. Giordano, A. Ulianov, O. Müntener, J. Maier, M. Grätzel, A. Hagfeldt, Proof-of-concept for facile perovskite solar cell recycling. Energ. Environ. Sci. 9, 3172–3179 (2016). https://doi.org/10.1039/c6ee02013e

    Article  CAS  Google Scholar 

  80. A. Binek, M.L. Petrus, N. Huber, H. Bristow, Y. Hu, T. Bein, P. Docampo, Recycling perovskite solar cells to avoid lead waste. ACS. Appl. Mater. Inter. 8, 12881–12886 (2016). https://doi.org/10.1021/acsami.6b03767

    Article  CAS  Google Scholar 

  81. C. Li, Z. Zhu, Y. Wang, Q. Guo, C. Wang, P. Zhong, Z. a. Tan, R. Yang, Lead acetate produced from lead-acid battery for efficient perovskite solar cells. Nano Energy. 69 (2020). https://doi.org/10.1016/j.nanoen.2019.104380

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, Y., Zhu, C., Hong, K., Qiu, K., Zhang, R. (2024). Advanced Perovskite Solar Cells. In: Ikhmayies, S.J. (eds) Advanced Ceramics. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-43918-6_3

Download citation

Publish with us

Policies and ethics