Skip to main content

Chemical Looping for CO2 Conversion and Utilization—Recent Advances and Perspective

  • Chapter
  • First Online:
Advanced Materials for Multidisciplinary Applications

Abstract

A massive increase in the emissions of CO2 is contributing to global warming and negatively impacting Earth’s ecosystems. To achieve CO2 removal or carbon neutrality, significant development of CO2 conversion and utilization technologies is needed. Chemical looping is an emerging clean energy technology with inherent CO2 separation. It involves the reaction and regeneration of solid materials termed as looping carriers. In recent years, the novel chemical looping processes and looping carriers were proposed, aiming at CO2 utilization as a partial substitute for hydrocarbon feedstock or a soft oxidant for looping carrier regeneration. This article describes the advances on this subject with a focus on the fundamentals of CO2 conversion during the redox reactions. It is expected that these new advances will accelerate the large-scale deployment of CO2 utilization technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mardani A, Streimikiene D, Cavallaro F, Loganathan N, Khoshnoudi M (2019) Sci Total Environ 649:31–49

    Article  CAS  Google Scholar 

  2. Energy/Emissions Data. Retrieved from https://www.c2es.org/content/international-emissions/

  3. Fan L-S (2017) Chemical looping partial oxidation: gasification, reforming, and chemical syntheses. Cambridge University Press

    Google Scholar 

  4. Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney D (2021) W. Environ Chem Lett 19:797–849

    Article  CAS  Google Scholar 

  5. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA et al (2018) Energy Environ Sci 11(5):1062–1176

    Article  CAS  Google Scholar 

  6. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) Energy Environ Sci 3(11):1645–1669

    Article  CAS  Google Scholar 

  7. Doughty C, Freifeld BM, Trautz RC (2008) Environ Geol 54(8):1635–1656

    Article  CAS  Google Scholar 

  8. Zheng Y, Zhang W, Li Y, Chen J, Yu B, Wang J, Zhang L, Zhang J (2017) Nano Energy 40:512–539

    Article  CAS  Google Scholar 

  9. Pérez-Fortes M, Schöneberger JC, Boulamanti A, Harrison G, Tzimas E (2016) Int J Hydrog Energy 41:16444–16462

    Article  Google Scholar 

  10. Maru MS, Ram S, Shukla RS, Noor-ul HK (2018) Mol Catal 446:23–30

    Article  CAS  Google Scholar 

  11. Hariyanandam GG, Hyun D, Natarajan P, Jung K-D, Yoon S (2016) Catal Today 265:52–55

    Article  Google Scholar 

  12. Molitor HR, Moore EJ, Schnoor JL (2019) ACS Sustain Chem Eng 7(10):9474–9479

    Article  CAS  Google Scholar 

  13. Yang H, Kaczur JJ, Sajjad SD, Masel RI (2017) J CO2 Util 20:208–217

    Google Scholar 

  14. Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A (2017) J CO2 Util 18:222–228

    Google Scholar 

  15. Castro S, Albo J, Irabien A (2018) ACS Sustain Chem Eng 6(12):15877–15894

    Article  CAS  Google Scholar 

  16. Suzuki TM, Takayama T, Sato S, Iwase A, Kudo A, Morikawa T (2018) Appl Catal B Environ 224:572–578

    Article  CAS  Google Scholar 

  17. Kondaveeti S, Abu-Reesh IM, Mohanakrishna G, Bulut M, Pant D (2020) Front Energy Res 8:94

    Article  Google Scholar 

  18. Arends JBA, Patil SA, Roume H, Rabaey KJ (2017) CO2 Util 20:141–149

    Google Scholar 

  19. Gao F, Bao R, Gao M, Yu SJ (2020) Mater Chem A 8:15458–15478

    Article  CAS  Google Scholar 

  20. Albero J, Peng Y, García H (2020) ACS Catal 10:5734–5749

    Article  CAS  Google Scholar 

  21. Hurtado L, Natividad R, García H (2016) Catal Commun 84:30–35

    Article  CAS  Google Scholar 

  22. Fan L-S (2011) Chemical looping systems for fossil energy conversions. Wiley

    Google Scholar 

  23. Joshi A, Shah V, Mohapatra P, Kumar S, Joshi RK, Kathe M, Qin L, Tong A, Fan L-S (2021) Adv Appl Energ 3:100044

    Article  CAS  Google Scholar 

  24. Cheng Z, Qin L, Guo M, Fan JA, Xu D, Fan L-S (2016) Phys Chem Chem Phys 18:16423–16435

    Article  CAS  Google Scholar 

  25. Mishra A, Li T, Li F, Santiso EE (2019) Chem Mater 31(3):689–698

    Article  CAS  Google Scholar 

  26. Cheng Z, Qin L, Guo M, Xu M, Fan JA, Fan L-S (2016) Phys Chem Chem Phys 18:32418–32428

    Article  CAS  Google Scholar 

  27. Zeng L, Cheng Z, Fan JA, Fan L-S, Gong J (2018) Nat Rev Chem 2(11):349–364

    Article  CAS  Google Scholar 

  28. Cheng Z, Qin L, Fan JA, Fan L-S (2018) Engineering 4:343–351

    Article  CAS  Google Scholar 

  29. Hu J, Galvita VV, Poelman H, Marin GB (2018) Materials (Basel) 11(7):1187

    Article  Google Scholar 

  30. Chung C, Qin L, Shah V, Fan L-S (2017) Energy Environ Sci 10:2318–2323

    Article  CAS  Google Scholar 

  31. Donat F, Müller CR (2020) Appl Catal B 278:119328

    Article  CAS  Google Scholar 

  32. Hepworth TC (1892) Oxygen for Limelight. Nature 47:176–177

    Article  Google Scholar 

  33. Bergmann FJ (1897) Process for the production of calcium carbide in blast furnaces. German Patent 29

    Google Scholar 

  34. Lane H (1913) Process of producing hydrogen. US Patent 1078686

    Google Scholar 

  35. Reed HC, Berg CH (1953) Hydrogen. US Patent 2635947

    Google Scholar 

  36. Institute of Gas Technology (1979) Development of the steam-iron process for hydrogen production. US Department Energy

    Google Scholar 

  37. Richter HJ, Knoche KF (1983) ACS Symp Ser 235:71–85

    Article  CAS  Google Scholar 

  38. Zeng L, Kathe MV, Chung EY, Fan L-S (2012) Curr Opin Chem Eng 1:290–295

    Article  CAS  Google Scholar 

  39. Berguerand N, Lyngfelt A (2008) Fuel 87:2713–2726

    Article  CAS  Google Scholar 

  40. Zhang Y, Wang D, Pottimurthy Y, Kong F, Hsieh TL, Sakadjian B et al (2021) Appl Energy 282:116065

    Article  CAS  Google Scholar 

  41. Ströhle J, Orth M, Epple B (2014) Appl Energy 113:1490–1495

    Article  Google Scholar 

  42. Herberta A, Chui J, Thibeault P, Edberg C, Turek D, Kenney J, Abdulally I, Chapman P, Kang S (2012) Alstom’s limestone-based (LCL) chemical looping process. In: 2nd International conference on chemical looping, TU Darmstadt, Germany

    Google Scholar 

  43. Fan L-S, Zeng L, Luo S (2015) AIChE J 61:2–22

    Article  CAS  Google Scholar 

  44. Qin L, Cheng Z, Baser D, Goldenbaum T, Fan JA, Fan L-S (2020) React Chem Eng 5:2204–2220

    Article  Google Scholar 

  45. Fan L-S, Zeng L, Wang W, Luo S (2012) Energy Environ Sci 5:7254–7280

    Article  CAS  Google Scholar 

  46. Neal LM, Shafiefarhood A, Li F (2014) ACS Catal 4:3560–3569

    Article  CAS  Google Scholar 

  47. Mihai O, Chen D, Holmen A (2012) J Catal 293:175–185

    Article  CAS  Google Scholar 

  48. Chung EY, Wang WK, Nadgouda SG, Baser DS, Sofranko JA, Fan L-S (2016) Ind Eng Chem Res 55:12750–12764

    Article  CAS  Google Scholar 

  49. Brady C, Murphy B, Xu B (2017) ACS Catal 7:3924–3928

    Article  CAS  Google Scholar 

  50. Gao W, Guo J, Wang P, Wang Q, Chang F, Pei Q et al (2018) Nat Energy 3:1067–1075

    Article  CAS  Google Scholar 

  51. Jangam K, Chen Y, Qin L, Fan L-S (2021) ACS Sustain Chem Eng 9(33):11204–11211

    Article  CAS  Google Scholar 

  52. Qin L, Cheng Z, Guo M, Fan JA, Fan L-S (2017) Acta Mater 124:568–578

    Article  CAS  Google Scholar 

  53. Li F, Kim HR, Sridhar D, Wang F, Zeng L, Chen J, Fan L-S (2009) Energy Fuels 23:4182–4189

    Article  CAS  Google Scholar 

  54. Qin L, Cheng Z, Fan JA, Kopechek D, Xu D, Deshpande N, Fan L-SJ (2015) Mater Chem A 3:11302–11312

    Article  CAS  Google Scholar 

  55. Kathe M, Sandvik P, Fryer C, Kong F, Zhang Y, Grigonis G, Fan L-S (2018) Energy Fuels 32(2):1139–1154

    Article  CAS  Google Scholar 

  56. Najera M, Solunke R, Gardner T, Veser G (2011) Chem Eng Res Des 89(9):1533–1543

    Article  CAS  Google Scholar 

  57. Cheng Z, Baser DS, Shah V, Fan JA, Fan L-S (2020) Energy Fuels 34(12):15370–15378

    Article  CAS  Google Scholar 

  58. Arora S, Prasad R (2016) RSC Adv 6:108668–108688

    Article  CAS  Google Scholar 

  59. Abad A, Adanez J, Cuadrat A, Garcia-Labiano F, Gayan P, de Diego LF (2011) Chem Eng Sci 66:689–702

    Article  CAS  Google Scholar 

  60. Qin L, Cheng Z, Guo M, Xu M, Fan JA, Fan L-S (2017) ACS Energy Lett 2:70–74

    Article  CAS  Google Scholar 

  61. Guo M, Cheng Z, Liu Y, Qin L, Goetze J, Fan JA, Fan L-S (2020) Catal Today 350:156–164

    Article  CAS  Google Scholar 

  62. Chen S, Zeng L, Tian H, Li X, Gong J (2017) ACS Catal 7:3548–3559

    Article  CAS  Google Scholar 

  63. Dai X, Yu C, Li R, Wu Q, Hao Z (2008) J Rare Earths 26:76–80

    Article  Google Scholar 

  64. Abdullah B, Abd Ghani NA, Vo DN (2017) J Clean Prod 162:170–185

    Article  CAS  Google Scholar 

  65. Kang D, Lim HS, Lee M, Lee JW (2018) Appl Energy 211:174–186

    Article  CAS  Google Scholar 

  66. Sun Z, Lu DY, Symonds RT, Hughes RW (2020) Chem Eng J 401:123481

    Article  CAS  Google Scholar 

  67. Kathe M, Empfield A, Sandvik P, Fryer C, Zhang Y, Blaira E, Fan L-S (2017) Energy Environ Sci 10:1345–1349

    Article  CAS  Google Scholar 

  68. Park C, Hsieh T, Pottimurthy Y, Shah V, Xu D, Chen Y, Fan L-S, Tong A (2020) Ind Eng Chem Res 59(15):6886–6899

    Article  CAS  Google Scholar 

  69. Shah V, Cheng Z, Mohapatra P, Fan L-S (2021) Reaction Chemistry & Engineering 6:1928-1939

    Article  CAS  Google Scholar 

  70. Shah V, Cheng Z, Baser DS, Fan JA, Fan L-S (2021) Appl Energy 282:116111

    Article  CAS  Google Scholar 

  71. Perejón A, Romeo LM, Lara Y, Lisbona P, Martínez A, Valverde JM (2016) Appl Energy 162:787–807

    Article  Google Scholar 

  72. Bhatia SK, Perlmutter DD (1983) AIChE J 29:79–86

    Article  CAS  Google Scholar 

  73. Barker RJ (1973) Appl Chem Biotech 23:733–742

    Article  CAS  Google Scholar 

  74. Criado YA, Arias B, Abanades JC (2018) Ind Eng Chem Res 57:12595–12599

    Article  CAS  Google Scholar 

  75. Tian S, Yan F, Zhang Z, Jiang J (2019) Sci Adv 5(4):eaav5077-1–eaav5077-9

    Google Scholar 

  76. Galvita VV, Poelman H, Marin GB (2015) J Power Sources 286:362–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Shih Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Z., Mohapatra, P., Joshi, A., Joshi, R.K., Fan, LS. (2024). Chemical Looping for CO2 Conversion and Utilization—Recent Advances and Perspective. In: Wu, M., Gao, W., Li, L., Lu, Y., Liu, J.L. (eds) Advanced Materials for Multidisciplinary Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-39404-1_6

Download citation

Publish with us

Policies and ethics