Skip to main content

Energy-Related Rare Earth Element Sources

  • Chapter
  • First Online:
Rare Earth Metals and Minerals Industries

Abstract

Energy-related materials such as coal, coal-bearing wastes, and coal combustion products are traditionally thought of as sources or by-products of electric power generation. Increasingly, these materials are considered resources for their content of rare earth elements (REEs) and other useful constituents. In this chapter, we examine the distribution, modes of occurrence, and relative extractability of REEs from coal-derived materials. We also consider economic factors associated with recovery of REEs from these sources. While several coal-derived sources show promise for REE recovery at the pilot scale, in all cases, REE contents are much below those of primary ores, such that extraction and concentrating the REEs require new and innovative approaches that are largely developmental.

Among coal-related sources, fly ash is the most REE-enriched, as REEs from coal are strongly retained in these refractory solids remaining after coal combustion. Partitioning of coal-derived elements into fly ash has been known for decades but this has yet to be commercially exploited. A key drawback shown in this chapter is that a significant fraction of REEs in fly ash is contained in highly insoluble aluminosilicate glasses that make up the largest portion of this material. In addition to testing chemical or physical pretreatment approaches to help improve the extractability of REEs from fly ash, current research is applying modern analytical approaches to better understand the distribution of REEs on increasingly smaller scales, in the interest of targeting their recovery.

Next-most REE-enriched among coal-related materials are solid waste products of coal mining and wastes from coal preparation, both of which are REE-enriched relative to coal itself. These waste coals concentrate mineralogical constituents that are excluded during mining or removed during coal preparation because they do not contribute to the heating value of coal for power generation. Recovery of REEs from coal waste has shown promise at the pilot scale and has the added benefit of converting a waste into useful constituents.

Total REE contents of commercial coals are, on average, much below the 300 parts per million interest level for REE recovery set by the U.S. Department of Energy (DOE). However, as reviewed in this chapter, certain horizons within coal beds show preferential REE enrichment and could be targeted by selective mining. Beyond this, certain coals are REE-enriched overall due to their unique geologic histories involving derivation from REE-enriched sediment sources, deposition of volcanic ash during coal formation, or interaction of coal with REE-bearing fluids.

Acidic drainage from abandoned coal mines is produced by the breakdown of pyrite (FeS2), which is unstable in oxygenated conditions. While these acidic fluids have lower REE contents than any of the coal-based solids described above, they are proportionally enriched in certain heavy rare earths, especially yttrium (Y). Precipitates from coal-based acid-mine drainage concentrate REEs to levels that are of interest for recovery, and these are also promising sources for extraction at the pilot scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Geological Survey, The rare earth elements – vital to modern technologies and lifestyles: U.S. Geological Survey Fact Sheet 2014–3078 (2014), 4 p. https://pubs.usgs.gov/fs/2014/3078/

  2. B.S. Van Gosen, P.L. Verplanck, R.R. Seal II, K.R. Long, J. Gambogi, Rare earth elements, Chapter O, in Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply: U.S. Geological Survey Professional Paper 1802, ed. by K.J. Schulz, J.H. DeYoung Jr., R.R. Seal II, D.C. Bradley, (2017), pp. O1–O31. https://doi.org/10.3133/pp1802O

    Chapter  Google Scholar 

  3. S. Dai, R.B. Finkelman, Coal as a promising source of critical elements: progress and future prospects. Int. J. Coal Geol. 186, 155–164 (2018). https://doi.org/10.1016/j.coal.2017.06.005

    Article  CAS  Google Scholar 

  4. Stanford University, Critical minerals scarcity could threaten renewable energy future, Stanford earth matters magazine (2018). https://earth.stanford.edu/news/critical-minerals-scarcity-could-threaten-renewable-energy-future#gs.hnmriv. Accessed 11/26/21

  5. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling and environmental impact. Geosci. Front. 10, 1285–1303 (2019). https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  6. D.H. Dang, K.A. Thompson, L. Ma, H.Q. Nguyen, S.T. Luu, M.T. Nguyen Duong, A. Kernaghan, Toward the circular economy of rare earth elements: a review of abundance, extraction, applications and environmental impacts. Arch. Environ. Contam. Toxicol. 81(p), 521–530 (2021). https://doi.org/10.1007/s00244-021-00867-7

    Article  CAS  Google Scholar 

  7. T. Fishman, T.E. Graedel, Impact of the establishment of U.S. offshore wind power on neodymium flows. Nat. Sustain. 2, 332–338 (2019). https://doi.org/10.1038/s41893-019-0252-z

    Article  Google Scholar 

  8. C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, B. Steubing, Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020). https://doi.org/10.1038/s43246-020-00095-x. www.nature.com/commsmat

    Article  Google Scholar 

  9. U.S. Geological Survey, Mineral commodity summaries, rare earths (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-rare-earths.pdf

  10. U.S. Department of Energy, National Energy Technology Laboratory, Rare earth elements, 2019 project portfolio (2019), 36 p. https://netl.doe.gov/sites/default/files/2019-04/2019-REE-Project-Portfolio.pdf. Accessed 12/6/2021

  11. S.P. Schweinfurth, Coal — a complex natural resource: An overview of factors affecting coal quality and use in the United States. U.S. Geol. Surv. Cir. 1143, 39 p (2003). https://doi.org/10.3133/cir1143

  12. S. Dai, A. Bechtel, C.F. Eble, R.M. Flores, D. French, I.T. Graham, M.M. Hood, J.C. Hower, V.A. Korasidis, T.A. Moore, W. Püttmann, Q. Wei, J.M.K. O’Keefe, Recognition of peat depositional environments in coal: a review. Int. J. Coal Geol. 219, 103383 (2020). https://doi.org/10.1016/j.coal.2019.103383

    Article  CAS  Google Scholar 

  13. V.M. Goldschmidt, Rare elements in coal ashes. Ind. Eng. Chem. 27, 1100–1102 (1935). https://doi.org/10.1021/ie50309a032

    Article  CAS  Google Scholar 

  14. U.S. Energy Information Administration, Energy explained: coal data and statistics (2021). https://www.eia.gov/energyexplained/coal/data-and-statistics.php. Accessed 11/23/2021

  15. American Coal Ash Association, Beneficial use of coal combustion products – an American recycling success story (2021). https://acaa-usa.org/wp-content/uploads/coal-combustion-products-use/ACAA-Brochure-Web.pdf. Accessed 4/8/22

  16. J.C. Hower, E.J. Granite, D.B. Mayfield, A.S. Lewis, R.B. Finkelman, Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Fortschr. Mineral. 6, 32 (2016). https://doi.org/10.3390/min6020032

    Article  CAS  Google Scholar 

  17. J.C. Hower, J.G. Groppo, K.R. Henke, U.M. Graham, M.M. Hood, P. Joshi, D.V. Preda, Ponded and landfilled fly ash as a source of rare earth elements from a Kentucky power plant. Coal Combust Gasif Prod 9, 1–21 (2017). https://doi.org/10.4177/CCGP-D-17-00003.1

    Article  Google Scholar 

  18. J.C. Hower, A. Kolker, H. Hsu-Kim, D. Plata, Rare earth elements in coal and coal ash and their potential extraction, in Rare Earth Elements and Their Sustainable Extraction from Secondary Sources, ed. by A. Karamalidis, R. Eggert, (American Geophysical Union, Geophysical Monograph Series, 2023)

    Google Scholar 

  19. International Energy Agency, Key World Energy Statistics (2021). https://www.iea.org/reports/key-world-energy-statistics-2021. Accessed 11/23/2021

  20. J.E. Birdwell, Review of rare earth element concentrations in oil shales of the Eocene Green River Formation: U.S. Geological Survey Open-File Report 2012–1016 (2012), 20 p. https://pubs.usgs.gov/of/2012/1016/

  21. M.S. Blondes, K.D. Gans, M.A. Engle, Y.K. Kharaka, M.E. Reidy, V. Saraswathula, J.J. Thordsen, E.L. Rowan, E.A. Morrissey, U.S. Geological Survey National Produced Waters Geochemical Database (ver. 2.3, January 2018) (U.S. Geological Survey Data Release, 2018). https://doi.org/10.5066/F7J964W8

    Book  Google Scholar 

  22. W. Zhang, A. Noble, X. Yang, R. Honaker, A comprehensive review of rare earth elements recovery from coal-related materials. Fortschr. Mineral. 10, 451 (2020). https://doi.org/10.3390/min10050451

    Article  CAS  Google Scholar 

  23. N.K. Foley, R.A. Ayuso, Conventional rare earth element mineral deposits—the global landscape, in Rare Earth Metals and Minerals Industries: Status and Prospects, ed. by Y.V. Murty, M.A. Alvin, J.P. Lifton, (Springer Nature, Cham, 2023)

    Google Scholar 

  24. A. Jordens, Y.P. Cheng, K.E. Waters, A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114 (2013). https://doi.org/10.1016/j.mineng.2012.10.017

    Article  CAS  Google Scholar 

  25. S.R. Taylor, S.M. McLennan, The Continental Crust — Its Composition and Evolution (Blackwell Scientific Publishers, Boston, 1985), 312 p

    Google Scholar 

  26. S.R. Taylor, S.M. McLennan, The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995). https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  27. S.M. McLennan, Relationships between the trace element composition of sedimentary rocks and the upper continental crust. Geochem Geophys Geosyst 2, 2000GC000109 (2001). https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  28. R.L. Rudnick, S. Gao, The composition of the continental crust, in Treatise on Geochemistry, Vol. 3, The Crust, ed. by H.D. Holland, K.K. Turekian, (Elsevier-Pergamon, Oxford, 2003), pp. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4

    Chapter  Google Scholar 

  29. F. Zhang, B. Li, X. Zhuang, X. Querol, N. Moreno, Y. Shangguan, J. Zhou, J. Liao, Geological controls on enrichment of rare earth elements and yttrium (REY) in late Permian coals and non-coal rocks in the Xian’an Coalfield, Guangxi Province. Fortschr. Mineral. 11, 301 (2021). https://doi.org/10.3390/min11030301

    Article  CAS  Google Scholar 

  30. M.P. Ketris, Y.E. Yudovich, Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int. J. Coal Geol. 78, 135–148 (2009). https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  31. R.B. Finkelman, Trace and minor elements in coal, in Organic Geochemistry: Principles and Applications, ed. by M.H. Engel, S.A. Macko, (Springer, 1993), pp. 593–607

    Chapter  Google Scholar 

  32. S. Dai, I.T. Graham, C.R. Ward, A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 159, 82–95 (2016). https://doi.org/10.1016/j.coal.2016.04.005

    Article  CAS  Google Scholar 

  33. International Union of Pure and Applied Chemistry (IUPAC), Nomenclature of inorganic chemistry, in IUPAC Recommendations, 2005, (RSC Publishing, Cambridge, 2005), p. 51

    Google Scholar 

  34. C. Scott, A. Kolker, Rare earth elements in coal and coal fly ash: U.S. Geological Survey Fact Sheet 2019–3048 (2019), 4 p. https://doi.org/10.3133/fs20193048

  35. U.S. Geological Survey, Mineral commodity summaries, scandium (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-scandium.pdf

  36. A. Noble, Fundamental Perspectives on Economic Analysis of Rare Earth Processing from Various Feedstocks, in Rare Earth Metals and Minerals Industries: Status and Prospects, ed. by Y.V. Murty, M.A. Alvin, J.P. Lifton, (Springer Nature, Cham, 2023)

    Google Scholar 

  37. G.N. Hanson, Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci. 8, 371–406 (1980)

    Article  CAS  Google Scholar 

  38. V.V. Seredin, S. Dai, Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 94, 67–93 (2012). https://doi.org/10.1016/j.coal.2011.11.001

    Article  CAS  Google Scholar 

  39. A. Kolker, C. Scott, J.C. Hower, J.A. Vazquez, C.L. Lopano, S. Dai, Distribution of rare elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 184, 1–10 (2017). https://doi.org/10.1016/j.coal.2017.10.002

    Article  CAS  Google Scholar 

  40. A. Kolker, C. Scott, L. Lefticariu, M. Mastalerz, A. Drobniak, A.M. Scott, Trace element partitioning during coal preparation: insights from U.S. Illinois Basin coals. Int. J. Coal Geol. 243, 103781 (2021). https://doi.org/10.1016/j.coal.2021.103781

    Article  CAS  Google Scholar 

  41. G.M. Eskenazy, Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem. 11, 83–89 (1987). https://doi.org/10.1016/0146-6380(87)90030-1

    Article  Google Scholar 

  42. G.M. Eskanazy, Aspects of the geochemistry of rare earth elements in coal: an experimental approach. Int. J. Coal Geol. 38, 285–295 (1999). https://doi.org/10.1016/S0166-5162(98)00027-5

    Article  Google Scholar 

  43. J.C. Hower, C.F. Eble, S. Dai, H.E. Belkin, Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment. Int. J. Coal Geol. 160–161, 73–81 (2016). https://doi.org/10.1016/j.coal.2016.04.009

    Article  CAS  Google Scholar 

  44. G.M. Eskenazy, Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int. J. Coal Geol. 7, 301–314 (1987). https://doi.org/10.1016/0166-5162(87)90041-3

    Article  Google Scholar 

  45. R.B. Finkelman, The origin, occurrence, and distribution of the inorganic constituents in low-rank coals, in Proceedings of the Basic Coal Science Workshop. H.H. Schobert, Compiler, (Grand Forks Energy Tech, Center, Grand Forks, ND, 1981), pp. 70–90

    Google Scholar 

  46. R. Lin, T.L. Bank, E.A. Roth, E.J. Granite, Y. Soong, Organic and inorganic associations of rare earth elements in central Appalachian coal. Int. J. Coal Geol. 179, 295–301 (2017). https://doi.org/10.1016/j.coal.2017.07.002

    Article  CAS  Google Scholar 

  47. D.A. Laudal, S.A. Benson, R.S. Addleman, D. Palo, Leaching behavior of rare earth elements in Fort Union lignite coals of North America. Int. J. Coal Geol. 191, 112–124 (2018). https://doi.org/10.1016/j.coal.2018.03.010

    Article  CAS  Google Scholar 

  48. R.B. Finkelman, S. Dai, D. French, The importance of minerals in coal as the hosts of chemical elements: a review. Int. J. Coal Geol. 212, 103251 (2019). https://doi.org/10.1016/j.coal.2019.103251

    Article  CAS  Google Scholar 

  49. S. Dai, J.C. Hower, R.B. Finkelman, I.T. Graham, D. French, C.R. Ward, G. Eskanazy, Q. Wei, L. Zhao, Organic associations of non-mineral elements in coal: a review. Int. J. Coal Geol. 218 (2020). https://doi.org/10.1016/j.coal.2019.103347

  50. S. Dai, R.B. Finkelman, D. French, J.C. Hower, I.T. Graham, F. Zhao, Modes of occurrence of elements in coal: a critical evaluation. Earth Sci. Rev. 222 (2021). https://doi.org/10.1016/j.earscirev.2021.103815

  51. C.J. Zygarlicke, B.C. Folkedahl, C.M. Nyberg, I.K. Feole, B.A. Kurz, N.L. Theakar, S.A. Benson, J.C. Hower, C.F. Eble, Rare earth elements (REEs) in U.S. coal based resources: sampling, characterization and round-Robin Interlaboratory Study (2019). https://edx.netl.doe.gov/dataset/rare-earth-elements-in-u-s-coal-based-resources,rfp-10982-fe0029007-final-report-RRIS-UND.pdf. Accessed 17 Nov 2021

  52. V.V. Seredin, Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol. 30, 101–129 (1996). https://doi.org/10.1016/0166-5162(95)00039-9

    Article  CAS  Google Scholar 

  53. V.V. Seredin, S. Dai, Y. Sun, I.Y. Chekryzhov, Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 31, 1–11 (2013). https://doi.org/10.1016/j.apgeochem.2013.01.009

    Article  CAS  Google Scholar 

  54. M. Mastalerz, A. Drobniak, C. Eble, P. Ames, P. McLaughlin, Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. Int. J. Coal Geol. 231 (2020). https://doi.org/10.1016/j.coal.2020.103620

  55. R. Lin, Y. Soong, E.J. Granite, REE is U.S. Coal. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: rare earth elements and yttrium (REY). Int. J. Coal Geol. 192, 1–13 (2018). https://doi.org/10.1016/j.coal.2018.04.004

    Article  CAS  Google Scholar 

  56. U.S. Geological Survey, Mineral commodity summaries, yttrium (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-yttrium.pdf

  57. N.J. Wagner, A. Matiane, Rare earth elements in select Main Karoo Basin (South Africa) coal and coal ash samples. Int. J. Coal Geol. 196, 82–92 (2018). https://doi.org/10.1016/j.coal.2018.06.020

    Article  CAS  Google Scholar 

  58. R.S. Blissett, N. Smalley, N.A. Rowson, An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 199, 236–239 (2014). https://doi.org/10.1016/j.fuel.2013.11.053

    Article  CAS  Google Scholar 

  59. W. Franus, M.M. Wiatros-Motyka, M. Wdowin, Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. 22, 9464–9474 (2015). https://doi.org/10.1007/s11356-015-4111-9

    Article  CAS  Google Scholar 

  60. R.K. Taggart, J.C. Hower, G.S. Dwyer, H. Hsu-Kim, Trends in rare earth element content of U.S.-based coal combustion fly ashes. Environ. Sci. Technol. 50(11), 5919–5926 (2016). https://doi.org/10.1021/acs.est.6b00085

    Article  CAS  Google Scholar 

  61. J.C. Hower, J.G. Groppo, H. Hsu-Kim, R.K. Taggart, Signatures of rare earth element distributions in fly ash derived from the combustion of central Appalachian, Illinois, and Powder River Basin coals. Fuel 301 (2021). https://doi.org/10.1016/j.fuel.2021.121048

  62. J.C. Hower, J.G. Groppo, H. Hsu-Kim, R.K. Taggart, Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals. Fuel 289 (2021). https://doi.org/10.1016/j.fuel.2020.119990

  63. P. Liu, R. Huang, Y. Tang, Comprehensive understandings of rare earth element (REE) speciation in coal fly ashes and implication for REE extractability. Environ. Sci. Technol. 53, 5369–5377 (2019). https://doi.org/10.1021/acs.est.9b00005

    Article  CAS  Google Scholar 

  64. N. Couto, A.R. Ferreira, V. Lopes, S.C. Peters, E.P. Mateus, A.B. Ribeiro, S. Pamukcu, Electrodialytic recovery of rare earth elements from coal ashes. Electrochim. Acta 359 (2020). https://doi.org/10.1016/j.electacta.2020.136934

  65. M.Y. Stuckman, C.L. Lopano, E.J. Granite, Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy. Int. J. Coal Geol. 195, 125–138 (2018). https://doi.org/10.1016/j.coal.2018.06.001

    Article  CAS  Google Scholar 

  66. Z. Wang, S. Dai, J. Zou, D. French, I.T. Graham, Rare earth elements and yttrium in coal ash from the Luzhou Power Plant in Sichuan, Southwest China: concentration, characterization and optimized extraction. Int. J. Coal Geol. 203, 1–14 (2019). https://doi.org/10.1016/j.coal.2019.01.001

    Article  CAS  Google Scholar 

  67. L.B. Clarke, L.L. Sloss, Trace Elements – Emissions from Coal Combustion and Gasification (IEA Coal Research, IEACR/49, 1992), 111 p

    Google Scholar 

  68. J.A. Ratafia-Brown, Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Process. Technol. 39, 139–157 (1994)

    Article  CAS  Google Scholar 

  69. J.C. Hower, J.G. Groppo, K.R. Henke, M.M. Hood, C.F. Eble, R.Q. Honaker, W. Zhang, D. Qian, Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash. Fortschr. Mineral. 5, 356–366 (2015). https://doi.org/10.3390/min5020356

    Article  CAS  Google Scholar 

  70. C. Lanzerstorfer, Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Rep. 4, 660–663 (2018). https://doi.org/10.1016/j.egyr.2018.10.010

    Article  Google Scholar 

  71. A. Valian, J.G. Groppo, C.F. Eble, J.C. Hower, R.Q. Honaker, S.F. Greb, Distribution of rare earth elements in the Illinois Basin coals. Min. Metall. Explor. 38, 1645–1663 (2021). https://doi.org/10.1007/s42461-020-00257-y

    Article  Google Scholar 

  72. U.S. Department of Energy, National Energy Technology Laboratory (2017). https://www.energy.gov/articles/high-concentrations-rare-earth-elements-found-american-coal-basins

  73. J.C. Hower, L.F. Ruppert, C.F. Eble, Lanthanide, yttrium and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 39, 141–153 (1999)

    Article  CAS  Google Scholar 

  74. J.C. Hower, D. Berti, M.F. Hochella Jr., S.M. Mardon, Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky. Int. J. Coal Geol. 193, 73–86 (2018). https://doi.org/10.1016/j.coal.2018.05.001

    Article  CAS  Google Scholar 

  75. S.M. Mardon, J.C. Hower, Impact of coal properties on coal combustion by-product quality: examples from a Kentucky Power Plant. Int. J. Coal Geol. 59, 153–169 (2004). https://doi.org/10.1016/j.coal.2004.01.004

    Article  CAS  Google Scholar 

  76. J. Liu, S. Dai, X. He, J.C. Hower, T. Sakulpitakphon, Size-dependent variations in fly ash trace-element chemistry: examples from a Kentucky Power Plant and with emphasis on rare earth elements. Energy Fuel 31, 438–447 (2017). https://doi.org/10.1021/acs.energyfuels.6b02644

    Article  CAS  Google Scholar 

  77. J.C. Hower, C.F. Eble, J.S. Backus, P. Xie, J. Liu, B. Fu, M.M. Hood, Aspects of rare earth element enrichment in Central Appalachian coals. Appl Geochem 120 (2020). https://doi.org/10.1016/j.apgeochem.2020.104676

  78. J.C. Hower, C.F. Eble, P. Xie, J. Liu, B. Fu, M.M. Hood, Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Appl. Geochem. 136, 105150 (2022). https://doi.org/10.1016/j.coal.2020.103610

    Article  CAS  Google Scholar 

  79. S. Dai, L. Zhao, S. Peng, C.L. Chou, X. Wang, Y. Zhang, D. Li, Y. Sun, Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 81, 320–332 (2010). https://doi.org/10.1016/j.coal.2009.03.005

    Article  CAS  Google Scholar 

  80. S. Dai, Y. Jiang, C.R. Ward, L. Gu, V.V. Seredin, H. Liu, D. Zhou, X. Wang, Y. Sun, J. Zou, D. Ren, Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 98, 10–40 (2012). https://doi.org/10.1016/j.coal.2012.03.003

    Article  CAS  Google Scholar 

  81. A. Deonarine, A. Kolker, M. Doughten, Trace elements in coal ash: U.S. Geological Survey Fact Sheet 2015–3037 (2015), 6 p. https://doi.org/10.3133/fs20153037

  82. C. Senior, Mercury behavior in coal combustion systems, in Mercury Emissions Control for Coal-Derived Gas Streams, ed. by E. Granite, C. Senior, H. Pennline, (Wiley-VCH, 2014), pp. 109–132. https://doi.org/10.1002/9783527658787.ch7

    Chapter  Google Scholar 

  83. C. Senior, E. Granite, W. Linak, W. Seames, Chemistry of trace inorganic elements in coal: a century of discovery. Energy Fuels 34(12), 15141–15168 (2020). https://doi.org/10.1021/acs.energyfuels.0c02375

    Article  CAS  Google Scholar 

  84. J.C. Hower, T. Sakulpitakphon, A.S. Trimble, G.A. Thomas, W.H. Schram, Major and minor element distribution in fly ash from a coal-fired utility boiler in Kentucky. Energy Sources Part A Recover Util. Environ. Eff. 28(1), 79–95 (2006). https://doi.org/10.1080/009083190889753

    Article  CAS  Google Scholar 

  85. R. Świetlik, M. Trojanowska, M.A. Jóźwiak, Evaluation of the distribution of heavy metals and their chemical forms in ESP-fractions of fly ash. Fuel Process. Technol. 95, 109–118 (2012). https://doi.org/10.1016/j.fuproc.2011.11.019

    Article  CAS  Google Scholar 

  86. J.C. Hower, C.L. Senior, E.M. Suuberg, R.H. Hurt, J.L. Wilcox, E.S. Olson, Mercury capture by native fly ash carbons in coal-fired power plants. Prog. Energy Combust. Sci. 36, 510–529 (2010). https://doi.org/10.1016/j.pecs.2009.12.003

    Article  CAS  Google Scholar 

  87. M.M. Hood, R.K. Taggart, R.C. Smith, H. Hsu-Kim, K.R. Henke, U.M. Graham, J.G. Groppo, J.M. Unrine, J.C. Hower, Rare earth element distribution in Fly ash derived from the fire clay coal, Kentucky. Coal Combust. Gasif. Prod. 9, 22–33 (2017). https://doi.org/10.4177/CCGP-D-17-00002.1

    Article  Google Scholar 

  88. C.R. Ward, Analysis, origin and significance of mineral matter in coal: an updated review. Int. J. Coal Geol. 165, 1–27 (2016). https://doi.org/10.1016/j.coal.2016.07.014

    Article  CAS  Google Scholar 

  89. W. Zhang, J.G. Groppo, R.Q. Honaker, Ash beneficiation for REE recovery. World of Coal Ash, 5–7 May 2015, Nashville, TN, Paper 194-Groppo-2015 (2015). http://www.flyash.info/2015/194-Groppo-2015.pdf. Accessed 29 Nov 2021

  90. J. Yang, Y. Zhao, V. Zyryanov, J. Zhang, C. Zheng, Physical-chemical characteristics and elements enrichment of magnetospheres from coal fly ashes. Fuel 135, 15–26 (2014). https://doi.org/10.1016/j.fuel.2014.06.033

    Article  CAS  Google Scholar 

  91. S.N. Montross, C.A. Verba, H.L. Chan, C. Lopano, Advanced characterization of rare earth element minerals in coal utilization by-products using multimodal image analysis. Int. J. Coal Geol. 195, 362–372 (2018). https://doi.org/10.1016/j.coal.2018.06.018

    Article  CAS  Google Scholar 

  92. J.C. Hower, D. Qian, N.J. Briot, E. Santillan-Jimenez, M.M. Hood, R.K. Taggart, H. Hsu-Kim, Nano-scale rare earth distribution in fly ash derived from the combustion of the fire clay coal, Kentucky. Fortschr. Mineral. 9, 10 (2019). https://doi.org/10.3390/min9040206

    Article  CAS  Google Scholar 

  93. Y. Hikichi, T. Nomura, Melting temperatures of monazite and xenotime. J. Am. Ceram. Soc. 70, C252–C253 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04890.x

    Article  Google Scholar 

  94. R.J. Finch, J.M. Hanchar, Structure and chemistry of zircon and zircon group minerals, in Zircon. Reviews in Mineralogy and Geochemistry, ed. by J.M. Hanchar, P.W.O. Hoskin, vol. 53, (Mineralogical Society of America, 2003), pp. 1–25. https://doi.org/10.2113/0530001

    Chapter  Google Scholar 

  95. K.A. Farley, He diffusion systematics in minerals: evidence from synthetic monazite and zircon structure phosphates. Geochim. Cosmochim. Acta 71, 4015–4024 (2007). https://doi.org/10.1016/j.gca.2007.05.022

    Article  CAS  Google Scholar 

  96. D.J. Cherniak, E.B. Watson, Diffusion of helium in natural monazite, and preliminary results on He diffusion in synthetic light rare earth phosphates. Am. Mineral. 98, 1407–1420 (2013)

    Article  CAS  Google Scholar 

  97. D.J. Cherniak, E.B. Watson, J.B. Thomas, Diffusion of helium in zircon and apatite. Chem. Geol. 268, 155–166 (2009). https://doi.org/10.1016/j.chemgeo.2009.08.011

    Article  CAS  Google Scholar 

  98. C.A. Palmer, C.L. Oman, A.J. Park, J.A. Luppens, The U.S. geological survey coal quality (COALQUAL) database version 3.0: U.S. Geological Survey Data Series 975 (2015), 43 p with appendixes. https://doi.org/10.3133/ds975

  99. S. Dai, D. Li, C.-L. Chou, L. Zhao, Y. Zhang, D. Ren, Y. Ma, Y. Sun, Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 74, 185–202 (2008). https://doi.org/10.1016/j.coal.2008.01.001

    Article  CAS  Google Scholar 

  100. S. Dai, X. Yan, C.R. Ward, J.C. Hower, L. Zhao, X. Wang, L. Zhao, D. Ren, R.B. Finkelman, Valuable elements in Chinese coals: a review. Int. Geol. Rev. 60(5–6), 590–620 (2018). https://doi.org/10.1080/00206814.2016.1197802

    Article  Google Scholar 

  101. J.H. Hodgkinson, M. Grigorescu, Strategic elements in the fort Cooper coal measures: potential rare earth elements and other multi-product targets. Aust. J. Earth Sci. 67(3), 305–319 (2020). https://doi.org/10.1080/08120099.2019.1660712

    Article  CAS  Google Scholar 

  102. Q. Huang, D. Talan, J.H. Restrepo, O.J. Restrepo Baena, V. Kecojevic, A. Noble, Characterization study of rare earths, yttrium and scandium from various Colombian coal samples and non-coal lithologies. Int. J. Coal Geol. 209, 14–26 (2019). https://doi.org/10.1016/j.coal.2019.04.008

    Article  CAS  Google Scholar 

  103. V. Mishra, S. Chakravarty, R.B. Finkelman, A.K. Atul Kumar Varma, Geochemistry of rare earth elements in lower Gondwana coals of the Talchir Coal Basin, India. J. Geochem. Explor. 204, 43–56 (2019). https://doi.org/10.1016/j.gexplo.2019.04.006

    Article  CAS  Google Scholar 

  104. F. Anggara, D.H. Amijaya, A. Harijoko, T.N. Tambaria, A.A. Sahri, Z.A. Zain Andrian Nur Asa, Rare earth element and yttrium content of coal in the Banko Coalfield, South Sumatra Basin, Indonesia: contributions from tonstein layers. Int. J. Coal Geol. 196, 159–172. https://doi.org/10.1016/j.coal.2018.07.006

  105. S.J. Schatzel, B.W. Stewart, Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines. Int. J. Coal Geol. 54, 223–251 (2003). https://doi.org/10.1016/S0166-5162(03)00038-7

    Article  CAS  Google Scholar 

  106. S.J. Schatzel, B.W. Stewart, A provenance study of mineral matter in coal from Appalachian Basin coal mining regions and implications regarding the respirable health of underground coal workers: a geochemical and Nd isotope investigation. Int. J. Coal Geol. 94, 123–136 (2012). https://doi.org/10.1016/j.coal.2012.01.011

    Article  CAS  Google Scholar 

  107. C. Zhao, B. Liu, L. Xiao, Y. Li, S. Liu, Z. Li, B. Zhao, J. Ma, G. Chu, P. Gao, Y. Sun, Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, Northern Qaidam Basin, China — a hidden gem. Ore Geol. Rev. 83, 1–13 (2017). https://doi.org/10.1016/j.oregeorev.2016.12.012

    Article  CAS  Google Scholar 

  108. B. Fu, J.C. Hower, W. Zhang, G. Luo, H. Hu, H. Yao, A review of rare earth elements and yttrium in coal ash: content, modes of occurrence, combustion behavior and extraction methods. Prog. Energy Combust. Sci. 88, 100954 (2022). https://doi.org/10.1016/j.pecs.2021.100954

    Article  Google Scholar 

  109. K.A. Eriksson, I.H. Campbell, J.M. Palin, C.M. Allen, Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. J. Geol. 111, 707–717 (2003). https://doi.org/10.1086/378338

    Article  Google Scholar 

  110. K.A. Eriksson, I.H. Campbell, J.M. Palin, C.M. Allen, B. Bock, Evidence for multiple recycling in neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian basin. J. Geol. 112, 261–276 (2004). https://doi.org/10.1086/382758

    Article  CAS  Google Scholar 

  111. W.A. Thomas, G.E. Gehrels, S.F. Greb, G.C. Nadon, A.M. Satkoski, M.C. Romero, Detrital zircons and sediment dispersal in the Appalachian foreland. Geosphere 13(6), 2206–2230 (2017). https://doi.org/10.1130/GES01525.1

    Article  Google Scholar 

  112. T.A. Johnson, J.D. Vervoort, M.J. Ramsey, S. Southworth, S.R. Mulcahy, Tectonic evolution of the Grenville Orogen in the central Appalachians. Precambrian Res. 346, 105740 (2020). https://doi.org/10.1016/j.precamres.2020.105740

    Article  CAS  Google Scholar 

  113. S. Dai, D. Ren, C.-L. Chou, S. Li, Y. Jiang, Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 66, 253–270 (2006). https://doi.org/10.1016/j.coal.2005.08.003

    Article  CAS  Google Scholar 

  114. S.I. Arbuzov, A.M. Mezhibor, D.A. Spears, S.S. Ilenok, M.V. Shaldybin, E.V. Belaya, Nature of tonsteins in the Azeisk deposit of the Irkutsk Coal Basin (Siberia, Russia). Int. J. Coal Geol. 153, 99–111 (2016). https://doi.org/10.1016/j.coal.2015.12.001

    Article  CAS  Google Scholar 

  115. S.I. Arbuzov, I.Y. Chekryzhov, R.B. Finkelman, Y.Z. Sun, C.L. Zhao, S.S. Il’enok, M.G. Blokhin, N.V. Zarubina, Comments on the geochemistry of rare earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of North Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int. J. Coal Geol. 206, 106–120 (2019). https://doi.org/10.1016/j.coal.2018.10.013

    Article  CAS  Google Scholar 

  116. S. Dai, C.R. Ward, I.T. Graham, D. French, J.C. Hower, L. Zhao, X. Wang, Altered volcanic ashes in coal and coal-bearing sequences: a review of their nature and significance. Earth Sci. Rev. 175, 44–74 (2017). https://doi.org/10.1016/j.earscirev.2017.10.005

    Article  CAS  Google Scholar 

  117. B.F. Bohor, D.M. Triplehorn, Tonsteins: altered volcanic-ash layers in coal-bearing sequences. Geol. Soc. Am. Spec. Pap. 285, 44 p (1993)

    Google Scholar 

  118. S. Dai, D. Ren, X. Hou, L. Shao, Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin Coalfield of Southwest China and their volcanic origin. Int. J. Coal Geol. 55, 117–138 (2003). https://doi.org/10.1016/S0166-5162(03)00083-1

    Article  CAS  Google Scholar 

  119. S. Dai, X. Wang, Y. Zhou, J.C. Hower, D. Li, W. Chen, X. Zhu, J. Zou, Chemical and mineralogical compositions of silicic, mafic and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 282, 29–44 (2011). https://doi.org/10.1016/j.chemgeo.2011.01.006

    Article  CAS  Google Scholar 

  120. P.C. Lyons, T.E. Krogh, Y.Y. Kwok, D.W. Davis, W.F. Outerbridge, H.T. Evans Jr., Radiometric ages of the fire clay tonstein [Pennsylvanian (upper carboniferous), Westphalian, Duckmantian]: a comparison of U–Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages. Int. J. Coal Geol. 67, 259–266 (2006). https://doi.org/10.1016/j.coal.2005.12.002

    Article  CAS  Google Scholar 

  121. D.A. Spears, The origin of tonsteins, an overview and links with seatearths, fireclays and fragmental clay rocks. Int. J. Coal Geol. 94, 22–31 (2012). https://doi.org/10.1016/j.coal.2011.09.008

    Article  CAS  Google Scholar 

  122. M. Guerra-Sommer, M. Cazzulo-Klepzig, J.O.S. Santos, L.A. Hartmann, J.M. Ketzer, M.L.L. Formoso, Radiometric age determination of tonsteins and stratigraphic constraints for the lower Permian coal succession in Southern Paraná Basin, Brazil. Int. J. Coal Geol. 74, 13–27 (2008). https://doi.org/10.1016/j.coal.2007.09.005

    Article  CAS  Google Scholar 

  123. X. Yang, R.Q. Honaker, Leaching kinetics of rare earth elements from fire clay seam coal. Fortschr. Mineral. 10, 491 (2020). https://doi.org/10.3390/min10060491

    Article  CAS  Google Scholar 

  124. V.V. Seredin, R.B. Finkelman, Metalliferous coals: a review of the main genetic and geochemical types. Int. J. Coal Geol. 76, 253–289 (2008). https://doi.org/10.1016/j.coal.2008.07.016

    Article  CAS  Google Scholar 

  125. S. Dai, D. Ren, C.-L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou, Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health and industrial utilization. Int. J. Coal Geol. 94, 3–21 (2012a). https://doi.org/10.1016/j.coal.2011.02.003

    Article  CAS  Google Scholar 

  126. S. Dai, I.Y. Chekryzhov, V.V. Seredin, V.P. Nechaev, I.T. Graham, J.C. Hower, C.R. Ward, D. Ren, X. Wang, Metalliferous coal deposits in East Asia (Primorye of Russia and South China): a review of geodynamic controls and styles of mineralization. Gondwana Res. 29, 60–82 (2016). https://doi.org/10.1016/j.gr.2015.07.001

    Article  CAS  Google Scholar 

  127. Q. Wei, S.M. Rimmer, Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. Int. J. Coal Geol. 178, 39–55 (2017). https://doi.org/10.1016/j.coal.2017.04.011

    Article  CAS  Google Scholar 

  128. S.I. Arbuzov, I.Y. Chekryzhov, D.A. Spears, S.S. Ilenok, B.R. Soktoev, N.Y. Popov, Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk Coalfield, Russian Far East. Ore Geol. Rev. 139 (2021). https://doi.org/10.1016/j.oregeorev.2021.104537

  129. B. Jiu, W. Huang, Y. Li, The origin, migration, and accumulation mechanism of germanium and the metallogenic model of coal-hosted Ge ore deposits in Wulantuga, Erlian Basin, China. J. Geochem. Explor. 226 (2021). https://doi.org/10.1016/j.gexplo.2021.106779

  130. W. Wang, Y. Qin, S. Sang, Y. Zhu, C. Wang, D.J. Weiss, Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao Mining District, Shanxi, China. Int. J. Coal Geol. 76, 309–317 (2008). https://doi.org/10.1016/j.coal.2008.08.012

    Article  CAS  Google Scholar 

  131. S.N. Montross, J. Yang, J. Britton, M. McKoy, C. Verba, Leaching of rare earth elements from central Appalachian coal seam underclays. Fortschr. Mineral. 10, 577 (2020). https://doi.org/10.3390/min10060577

    Article  CAS  Google Scholar 

  132. W. Zhang, A. Noble, Mineralogy characterization and recovery of rare earth elements from the roof and floor materials of the Guxu Coalfield. Fuel 270 (2020). https://doi.org/10.1016/j.fuel.2020.117533

  133. J. Yang, S. Montross, J. Britton, M. Stuckman, C. Lopano, C. Verba, Microanalytical approaches to characterizing REE in Appalachian basin underclays. Fortschr. Mineral. 10, 546 (2020). https://doi.org/10.3390/min10060546

    Article  CAS  Google Scholar 

  134. L. Zheng, G. Liu, C.-L. Chou, C. Qi, Y. Zhan, Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. J. Asian Earth Sci. 31, 167–176 (2007). https://doi.org/10.1016/j.jseaes.2007.06.001

    Article  Google Scholar 

  135. X. Yang, J. Werner, R.Q. Honaker, Leaching of rare earth elements from an Illinois Basin coal source. J. Rare Earths 37, 312–321 (2019). https://doi.org/10.1016/j.jre.2018.07.003

    Article  CAS  Google Scholar 

  136. P. Rozelle, A. Khadikar, N. Pulati, N. Soundarrajan, M. Klima, M. Mosser, C. Miller, S. Pisupati, A study on removal of rare earth elements from U.S. coal by-products by ion exchange. Metall. Mater.Trans. E 3, 6–17 (2016). https://link.springer.com/journal/40553

    CAS  Google Scholar 

  137. J.A. Luppens, D.C. Scott, J.E. Haacke, L.M. Osmonson, P.E. Pierce, Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana: U.S. Geological Survey Professional Paper 1809 (2015), 218 p. https://doi.org/10.3133/pp1809

  138. P.D. Warwick, C.E. Aubourg, S.E. Suitt, S.M. Podwysocki, A.C. Schultz, Coal resources for part of the Wilcox Group (Paleocene through Eocene), Central Texas, in Geologic Assessment of Coal in the Gulf of Mexico Coastal Plain, U.S.A.: AAPG Discovery Series No. 14/AAPG Studies in Geology No. 62, ed. by P.D. Warwick, A.K. Karlsen, M. Merrill, B.J. Valentine, (2011), pp. 192–259

    Chapter  Google Scholar 

  139. M.D. Mann, N.L. Theaker, B.J. Rew, S.A. Benson, A. Benson, D. Palo, C. Haugen, D. Laudal, Investigation of rare earth element extraction from North Dakota coal-related feedstocks: phase 2 final technical report, U.S. Department of Energy DE-FOA 0001202 (2021), 287 p. https://doi.org/10.2172/1785352

  140. J.A. East, Coal fields of the conterminous United States – National Coal Resource Assessment Updated Version: U.S. Geological Survey, Open-File Report 2012–1205 (2013). https://doi.org/10.3133/ofr20121205

  141. L.D. Moxness, E.C. Murphy, N.W. Kruger, Rare earth and other critical element concentrations in the sentinel Butte formation, Tracy Mountain, North Dakota, North Dakota Geological Survey Report of Investigation no. 128 (2021), 65 p

    Google Scholar 

  142. E.C. Murphy, Germanium in North Dakota Lignites. North Dakota Depart. Miner. Resources Newslett. 36(1), 14–15 (2009)

    Google Scholar 

  143. Z. Huang, M. Fan, H. Tian, Rare earth elements of fly ash from Wyoming’s Powder River Basin coal. J. Rare Earths 38, 219–226 (2020). https://doi.org/10.1016/j.jre.2019.05.004

    Article  CAS  Google Scholar 

  144. R.K. Taggart, J.C. Hower, H. Hsu-Kim, Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. Int. J. Coal Geol. 196, 106–114 (2018). https://doi.org/10.1016/j.coal.2018.06.021

    Article  CAS  Google Scholar 

  145. J.F. King, R.K. Taggart, R.C. Smith, J.C. Hower, H. Hsu-Kim, Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. Int. J. Coal Geol. 195, 75–83 (2018). https://doi.org/10.1016/j.coal.2018.05.009

    Article  CAS  Google Scholar 

  146. C.M. Oliveira, C.M. Machado, G.W. Duarte, M. Peterson, Beneficiation of pyrite from coal mining. J. Clean. Prod. 139, 821–827 (2016). https://doi.org/10.1016/j.jclepro.2016.08.124

    Article  CAS  Google Scholar 

  147. A. Kolker, Minor element distribution in iron-disulfides in coal: a geochemical review. Int. J. Coal Geol. 94, 32–43 (2012). https://doi.org/10.1016/j.coal.2011.10.011

    Article  CAS  Google Scholar 

  148. A.P. Deditius, S. Utsunomiya, M. Reich, S.E. Kesler, R.C. Ewing, R. Hough, J. Walshe, Trace metal nanoparticles in pyrite. Ore Geol. Rev. 42, 32–46 (2011). https://doi.org/10.1016/j.oregeorev.2011.03.003

    Article  Google Scholar 

  149. H. Sun, F. Zhao, M. Zhang, J. Li, Behavior of rare earth elements in acid coal mine drainage in Shanxi Province, China. Environ. Earth Sci. 67, 205–213 (2012). https://doi.org/10.1007/s12665-011-1497-7

    Article  CAS  Google Scholar 

  150. A.L. Wolfe, B.W. Stewart, R.C. Capo, R. Liu, D.A. Dzombak, G.W. Gordon, A.D. Anbar, Iron isotope investigation of hydrothermal and sedimentary pyrite and their aqueous dissolution products. Chem. Geol. 427, 73–82 (2016). https://doi.org/10.1016/j.chemgeo.2016.02.015

    Article  CAS  Google Scholar 

  151. X. Li, P. Wu, Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-ash coal mining area, southwestern China. Environ. Sci. Pollut. Res. 24, 20540–20555 (2017). https://doi.org/10.1007/s11356-017-9670-5

    Article  CAS  Google Scholar 

  152. S.M. Fortier, N.T. Nassar, G.W. Lederer, J. Brainard, J. Gambogi, E.A. McCullough, Draft critical mineral list — summary of methodology and background information—U.S. geological survey technical input document in response to secretarial order no. 3359: U.S. Geological Survey Open-File Report 2018–1021 (2018), 15 p. https://doi.org/10.3133/ofr20181021

  153. N.T. Nassar, S.M. Fortier, Methodology and technical input for the 2021 review and revision of the U.S. critical minerals list: U.S. Geological Survey Open-File Report 2021–1045 (2021), 31 p. https://doi.org/10.3133/ofr20211045

  154. U.S. Geological Survey, News Release, U.S. geological survey releases 2022 list of critical minerals | U.S. Geological Survey (usgs.gov) (2022). Accessed 7/13/2022

    Google Scholar 

  155. U.S. Geological Survey, Mineral commodity summaries, cesium (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-cesium.pdf

  156. U.S. Geological Survey, Mineral commodity summaries, rubidium (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-rubidium.pdf

  157. C.A. Cravotta III, Dissolved metals and associated constituents in abandoned coal mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Appl. Geochem. 23, 166–202 (2008). https://doi.org/10.1016/j.apgeochem.2007.10.011

    Article  CAS  Google Scholar 

  158. F. Zhao, Z. Cong, H. Sun, D. Ren, The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai Coal Mine, Shanxi Province, North China. Int. J. Coal Geol. 70(1), 184–192 (2007). https://doi.org/10.1016/j.coal.2006.01.009

    Article  CAS  Google Scholar 

  159. B.W. Stewart, R.C. Capo, B.C. Hedin, R.S. Hedin, Rare earth element resources in coalmine drainage and treatment precipitates in the Appalachian basin, USA. Int. J. Coal Geol. 169, 28–39 (2017). https://doi.org/10.1016/j.coal.2016.11.002

    Article  CAS  Google Scholar 

  160. P.K. Sahoo, S. Tripathy, S.M. Equeenuddin, M.K. Panigrahi, Geochemical characteristics of coal mine discharge vis-à-vis behavior of rare earth elements at Jaintia Hills Coalfield, Northeastern India. J. Geochem. Explor. 112, 235–243 (2012). https://doi.org/10.1016/j.gexplo.2011.09.001

    Article  CAS  Google Scholar 

  161. C.R. Vass, A. Noble, P.F. Ziemkiewicz, The occurrence and concentration of rare earth elements in acid mine drainage and treatment by-products: part 1 — initial survey of the northern Appalachian coal basin. Min. Metall. Explor. 36(5), 903–916 (2019). https://doi.org/10.1007/s42461-019-0097-z

    Article  Google Scholar 

  162. C.R. Vass, A. Noble, P.F. Ziemkiewicz, The occurrence and concentration of rare earth elements in acid mine drainage and treatment by-products. Part 2: regional survey of northern and central Appalachian coal basins. Min. Metall. Explor. 36(5), 917–929 (2019). https://doi.org/10.1007/s42461-019-00112-9

    Article  Google Scholar 

  163. L. Lefticariu, E.R. Walters, C.W. Pugh, K.S. Bender, Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: field experiments. Appl. Geochem. 63, 70–82 (2015). https://doi.org/10.1016/j.apgeochem.2015.08.002

    Article  CAS  Google Scholar 

  164. X. Li, R. Zhang, Q. Li, P. Wu, H. Ye, Rare earth elements and yttrium (REY) in coal mine drainage from Southwest China: geochemical distribution and resource evaluation. Sci. Total Environ. 782, 146904 (2021). https://doi.org/10.1016/j.scitotenv.2021.146904

    Article  CAS  Google Scholar 

  165. U.S. Environmental Protection Agency (U.S. EPA), 303(d) list impaired waters NHDPlus indexed dataset with program attributes. May 1, 2015 (2015). Retrieved from https://www.epa.gov/waterdata/waters-geospatial-data-downloads

  166. C.A. Cravotta III, K.B. Brady, Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Appl. Geochem. 62, 108–130 (2015). https://doi.org/10.1016/j.apgeochem.2015.03.001

    Article  CAS  Google Scholar 

  167. C.H. Gammons, S.A. Wood, J.P. Jonas, J.P. Madison, Geochemistry of rare earth elements and uranium in the acidic Berkeley Pit Lake, Butte, Montana. Chem. Geol. 198, 269–288 (2003). https://doi.org/10.1016/S0009-2541(03)00034-2

    Article  CAS  Google Scholar 

  168. D.K. Nordstrom, D.W. Blowes, C.J. Ptacek, Hydrogeochemistry and microbiology of mine drainage: an update. Appl. Geochem. 57, 3–16 (2015). https://doi.org/10.1016/j.apgeochem.2015.02.008

    Article  CAS  Google Scholar 

  169. K.A. Hudson-Edwards, H.E. Jamieson, B.G. Lottermoser, Mine wastes: past, present, future. Elements 7(6), 375–380 (2011). https://doi.org/10.2113/gselements.7.6.375

    Article  Google Scholar 

  170. A. Lozano, C. Ayora, A. Fernández-Martínez, Sorption of rare earth elements on schwertmannite and their mobility in acid mine drainage treatments. Appl. Geochem. 113, 104499 (2020). https://doi.org/10.1016/j.apgeochem.2019.104499

    Article  CAS  Google Scholar 

  171. D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.G. Weisener, D. Paktunc, W.D. Gould, D.B. Johnson, The geochemistry of acid mine drainage, in Environmental Geochemistry. Treatise on Geochemistry, ed. by B.S. Lollar, H.D. Holland, K.K. Turekian, vol. 11, 2nd edn., (Elsevier-Pergamon, Oxford, 2014), pp. 131–190. https://doi.org/10.1016/B978-0-08-095975-7.00905-0

    Chapter  Google Scholar 

  172. C.A. Cravotta III, Dissolved metals and associated constituents in abandoned coalmine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent concentrations. Appl. Geochem. 23, 203–226 (2008). https://doi.org/10.1016/j.apgeochem.2007.10.003

    Article  CAS  Google Scholar 

  173. R.R. Seal II, J.M. Hammarstrom, A.N. Johnson, N.M. Piatak, G.A. Wandless, Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco Mine, Virginia, USA. Appl. Geochem. 23(2), 320–342 (2008). https://doi.org/10.1016/j.apgeochem.2007.10.001

    Article  CAS  Google Scholar 

  174. C. Ayora, F. Macías, E. Torres, A. Lozano, S. Carrero, J.M. Nieto, R. Pérez-López, A. Fernández-Martínez, H. Castillo-Michel, Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environ. Sci. Technol. 50, 8255–8262 (2016). https://doi.org/10.1021/acs.est.6b02084

    Article  CAS  Google Scholar 

  175. A. Lozano, C. Ayora, F. Macías, R. León, M.J. Gimeno, L. Auqué, Geochemical behavior of rare earth elements in acid drainages: modeling achievements and limitations. J. Geochem. Explor. 216, 106577 (2020). https://doi.org/10.1016/j.gexplo.2020.106577

    Article  CAS  Google Scholar 

  176. S.A. Wood, W.M. Shannon, L. Baker, The aqueous geochemistry of the rare earth elements and yttrium. Part 13: REE geochemistry of mine drainage from the Pine Creek Area, Coeur d’Alene River valley, Idaho, USA, in Rare Earth Elements in Groundwater Flow Systems, (Springer, Dordrecht, 2005), pp. 89–110

    Chapter  Google Scholar 

  177. R.D. Taylor, A.K. Shah, G.J. Walsh, C.D. Taylor, Geochemistry and geophysics of iron oxide-apatite deposits and associated waste piles with implications for potential rare earth element resources from ore and historical mine waste in the Eastern Adirondack Highlands, New York, USA. Econ. Geol. 114, 1569–1598 (2019). https://doi.org/10.5382/econgeo.4689

    Article  Google Scholar 

  178. P.T. Behum, Y.P. Chugh, L. Lefticariu, Management of coal processing wastes: studies on an alternate technology for control of sulfate and chloride discharge. Int. J. Coal Sci. Technol. 5(1), 54–63 (2018). https://doi.org/10.1007/s40789-017-0185-y

    Article  CAS  Google Scholar 

  179. W. Zhang, R.Q. Honaker, Rare earth elements recovery using staged precipitation from a leachate generated from coarse coal refuse. Int. J. Coal Geol. 195, 189–199 (2018). https://doi.org/10.1016/j.coal.2018.06.008

    Article  CAS  Google Scholar 

  180. S.F. Greb, W.J. Nelson, S.D. Elrick, Mining geology of the principal resource coals of the Illinois Basin. Int. J. Coal Geol., 103589 (2020). https://doi.org/10.1016/j.coal.2020.103589

  181. P. Acero, J. Cama, C. Ayora, Sphalerite dissolution kinetics in acidic environment. Appl. Geochem. 22(9), 1872–1883 (2007). https://doi.org/10.1016/j.apgeochem.2007.03.051

    Article  CAS  Google Scholar 

  182. J. Liu, D.M. Aruguete, J.R. Jinschek, J.D. Rimstidt, M.F. Hochella Jr., The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape and aggregation state. Geochim. Cosmochim. Acta 72(24), 5984–5996 (2008). https://doi.org/10.1016/j.gca.2008.10.010

    Article  CAS  Google Scholar 

  183. J.D. Rimstidt, D.J. Vaughan, Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67(5), 873–880 (2003). https://doi.org/10.1016/S0016-7037(02)01165-1

    Article  CAS  Google Scholar 

  184. L. Lefticariu, L.M. Pratt, E.M. Ripley, Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150°C. Geochim. Cosmochim. Acta 70(19), 4889–4905 (2006). https://doi.org/10.1016/j.gca.2006.07.026

    Article  CAS  Google Scholar 

  185. D.K. Nordstrom, Effects of microbiological and geochemical interactions in mine drainage, in Environmental Aspects of Mine Wastes, Short Course Series, ed. by J.L. Jambor, D.W. Blowes, A.I.M. Ritchie, vol. 31, (Mineralogical Association of Canada, Ottawa, 2003), pp. 227–238

    Google Scholar 

  186. J.P. Jolivet, C. Chanéac, E. Tronc, Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 5, 481–483 (2004). https://doi.org/10.1039/B304532N

    Article  Google Scholar 

  187. J. Majzlan, S.C.B. Myneni, Speciation of iron and sulfate in acid waters: aqueous clusters to mineral precipitates. Environ. Sci. Technol. 39(1), 188–194 (2004). https://doi.org/10.1021/es049664p

    Article  CAS  Google Scholar 

  188. J.M. Bigham, D.K. Nordstrom, Iron and aluminum hydroxysulfates from acid sulfate waters. Rev. Mineral. Geochem. 40, 351–403 (2000). https://doi.org/10.2138/rmg.2000.40.7

    Article  CAS  Google Scholar 

  189. D.B. Johnson, T. Kanao, S. Hedrich, Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front. Microbiol. 3, 96 (2012). https://doi.org/10.3389/fmicb.2012.00096

    Article  Google Scholar 

  190. M.A. Caraballo, J.D. Rimstidt, F. Macías, J.M. Nieto, M.F. Hochella, Metastability, nanocrystallinity and pseudo-solid solution constraints to schwertmannite solubility. Chem. Geol. 360/361, 22–31 (2013). https://doi.org/10.1016/j.chemgeo.2013.09.023

    Article  CAS  Google Scholar 

  191. R. Fan, G. Qian, Y. Li, M.D. Short, R.C. Schumann, M. Chen, R.S.C. Smart, A.R. Gerson, Evolution of pyrite oxidation from a 10-year kinetic leach study: implications for secondary mineralization in acid mine drainage control. Chem. Geol., 120653 (2021). https://doi.org/10.1016/j.chemgeo.2021.120653

  192. P. Ziemkiewicz, T. He, A. Noble, X. Liu, Recovery of rare earth elements (REEs) from coal mine drainage, in West Virginia Mine Drainage Task Force Symposium, (Morgantown, WV, USA, 2016)

    Google Scholar 

  193. L. Lefticariu, K.L. Klitzing, A. Kolker, Rare earth elements and yttrium (REY) in coal mine drainage from the Illinois Basin, USA. Int. J. Coal Geol. 217, 103327 (2020). https://doi.org/10.1016/j.coal.2019.103327

    Article  CAS  Google Scholar 

  194. A. Biswas, M.J. Hendry, J. Essilfie-Dughan, S. Day, S.A. Villeneuve, S.L. Barbour, Geochemistry of zinc and cadmium in coal waste rock, Elk Valley, British Columbia, Canada. Appl. Geochem., 105148 (2021). https://doi.org/10.1016/j.apgeochem.2021.105148

  195. J. Essilfie-Dughan, M.J. Hendry, J.J. Dynes, Y. Hu, A. Biswas, S.L. Barbour, S. Day, Geochemical and mineralogical characterization of sulfur and iron in coal waste rock, Elk Valley, British Columbia, Canada. Sci. Total Environ. 586, 753–769 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.053

    Article  CAS  Google Scholar 

  196. J.A. Galhardi, D. Bonotto, Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environ. Sci. Pollut. Res. 23, 18911–18189 (2016). https://doi.org/10.1007/s11356-016-7077-3

    Article  CAS  Google Scholar 

  197. M. Shahhosseini, F.D. Ardejani, B. Ernest, Geochemistry of rare earth elements in a neutral mine drainage environment, Anjir Tangeh, Northern Iran. Int. J. Coal Geol. 183, 120–135 (2017). https://doi.org/10.1016/j.coal.2017.10.004

    Article  CAS  Google Scholar 

  198. C.W. Noack, D.A. Dzombak, A.K. Karamalidis, Rare earth element distributions and trends in natural waters with a focus on groundwater. Environ. Sci. Technol. 48, 4317–4326 (2014). https://doi.org/10.1021/es4053895

    Article  CAS  Google Scholar 

  199. A.E. Williams-Jones, A.A. Migdisov, I.M. Samson, Hydrothermal mobilization of the rare earth elements: a tale of “ceria” and “yttria”. Elements 8, 355–360 (2012). https://doi.org/10.2113/gselements.8.5.355

    Article  CAS  Google Scholar 

  200. Z.M. Migaszewski, A. Gałuszka, The characteristics, occurrence and geochemical behavior of rare earth elements in the environment: a review. Crit. Rev. Environ. Sci. Technol. 45(5), 429–471 (2015). https://doi.org/10.1080/10643389.2013.866622

    Article  CAS  Google Scholar 

  201. W. Zhang, R. Honaker, Process development for the recovery of rare earth elements and critical metals from an acid mine leachate. Miner. Eng. 153, 106382 (2020). https://doi.org/10.1016/j.mineng.2020.106382

    Article  CAS  Google Scholar 

  202. B.C. Hedin, R.S. Hedin, R.C. Capo, B.W. Stewart, Critical metal recovery potential of Appalachian acid mine drainage treatment solids. Int. J. Coal Geol. 231, 103610 (2020). https://doi.org/10.1016/j.coal.2020.103610

    Article  CAS  Google Scholar 

  203. A. Royer-Lavallee, C.M. Neculita, L. Coudert, Removal and potential recovery of rare earth elements from mine water. J. Ind. Eng. Chem. 89, 47–57 (2020). https://doi.org/10.1016/j.jiec.2020.06.010

    Article  CAS  Google Scholar 

  204. R. León, F. Macías, C.R. Cánovas, R. Pérez-López, C. Ayora, J.M. Nieto, M. Olías, Mine waters as a secondary source of rare earth elements worldwide: the case of the Iberian Pyrite Belt. J. Geochem. Explor. 224, 106742 (2021). https://doi.org/10.1016/j.gexplo.2021.106742

    Article  CAS  Google Scholar 

  205. B.C. Hedin, R.C. Capo, B.W. Stewart, R.S. Hedin, C.L. Lopano, M.Y. Stuckman, The evaluation of critical rare earth element (REE) enriched treatment solids from coalmine drainage passive treatment systems. Int. J. Coal Geol. 208, 54–64 (2019). https://doi.org/10.1016/j.coal.2019.04.007

    Article  CAS  Google Scholar 

  206. L. Lefticariu, S.R. Sutton, K.S. Bender, M. Lefticariu, M. Pentrak, J.W. Stucki, Impacts of detrital nano-and micro-scale particles (dNP) on contaminant dynamics in a coal mine AMD treatment system. Sci. Total Environ. 575, 941–955 (2017). https://doi.org/10.1016/j.scitotenv.2016.09.154

    Article  CAS  Google Scholar 

  207. M. Micari, A. Cipollina, A. Tamburini, M. Moser, V. Bertsch, G. Micale, Techno-economic analysis of integrated processes for the treatment and valorisation of neutral coal mine effluents. J. Clean. Prod. 270, 122472 (2020). https://doi.org/10.1016/j.jclepro.2020.122472

    Article  CAS  Google Scholar 

  208. A.M. Jones, R.N. Collins, T.D. Waite, Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochim. Cosmochim. Acta 75, 965–977 (2011). https://doi.org/10.1016/j.gca.2010.12.001

    Article  CAS  Google Scholar 

  209. D.G. Brookins, Aqueous geochemistry of rare earth elements. Rev. Mineral. Geochem. 21(1), 201–225 (1989). https://doi.org/10.1515/9781501509032-011

    Article  CAS  Google Scholar 

  210. S.A. Wood, The aqueous geochemistry of the rare earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990). https://doi.org/10.1016/0009-2541(90)90080-Q

    Article  CAS  Google Scholar 

  211. E.N. Rizkalla, G.R. Choppin, Lanthanides and actinides hydration and hydrolysis, in Handbook on the Physics and Chemistry of Rare Earths. Lanthanides/Actinides: Chemistry, ed. by K.A. Gschneider, L. Eyring, G.R. Choppin, G.H. Lander, vol. 18, (Elsevier Science B.V., Amsterdam, 1994). https://doi.org/10.1016/S0168-1273(05)80050-9

    Chapter  Google Scholar 

  212. Y. Takahashi, H. Yoshida, N. Sato, K. Hama, Y. Yusa, H. Shimizu, W- and M-type tetrad effects in REE patterns for water-rock systems in the tono uranium deposit, Central Japan. Chem. Geol. 184, 311–335 (2002). https://doi.org/10.1016/S0009-2541(01)00388-6

    Article  CAS  Google Scholar 

  213. M.I. Leybourne, K.H. Johannesson, Rare earth elements (REE) and yttrium in stream waters, stream sediments and Fe-Mn oxyhydroxides: fractionation, speciation and controls over REE + Y patterns in the surface environment. Geochim. Cosmochim. Acta 72, 5962–5983 (2008). https://doi.org/10.1016/j.gca.2008.09.022

    Article  CAS  Google Scholar 

  214. A. Thompson, M.K. Amistadi, O.A. Chadwick, J. Chorover, Fractionation of yttrium and holmium during basaltic soil weathering. Geochim. Cosmochim. Acta 119, 18–30 (2013). https://doi.org/10.1016/j.gca.2013.06.003

    Article  CAS  Google Scholar 

  215. J. Schijf, R.H. Byrne, Speciation of yttrium and the rare earth elements in seawater: review of a 20-year analytical journey. Chem. Geol. 584, 120479 (2021). https://doi.org/10.1016/j.chemgeo.2021.120479

    Article  CAS  Google Scholar 

  216. M. Bau, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation and lanthanide tetrad effect. Geochim. Cosmochim. Acta 63, 67–77 (1999). https://doi.org/10.1016/S0016-7037(99)00014-9

    Article  CAS  Google Scholar 

  217. I.L. Wallrich, B.W. Stewart, R.C. Capo, B.C. Hedin, T.T. Phan, Neodymium isotopes track sources of rare earth elements in acidic mine waters. Geochim. Cosmochim. Acta 269, 465–483 (2020). https://doi.org/10.1016/j.gca.2019.10.044

    Article  CAS  Google Scholar 

  218. K.H. Johannesson, W.B. Lyons, M.A. Yelken, H.E. Gaudette, K.J. Stetzenbach, Geochemistry of the rare earth elements in hypersaline and dilute acidic natural terrestrial waters: complexation behavior and middle rare earth element enrichments. Chem. Geol. 133(1–4), 125–144 (1996). https://doi.org/10.1016/S0009-2541(96)00072-1

    Article  CAS  Google Scholar 

  219. E.R. Sholkovitz, T.M. Church, R. Arimoto, Rare earth element composition of precipitation, precipitation particles and aerosols. J. Geophys. Res. Atmos. 98(D11), 20587–20599 (1993). https://doi.org/10.1029/93JD01926

    Article  Google Scholar 

  220. M. Iwashita, A. Saito, M. Arai, Y. Furusho, T. Shimamura, Determination of rare earth elements in rainwater collected in suburban Tokyo. Geochem. J. 45(3), 187–197 (2011). https://doi.org/10.2343/geochemj.1.0121

    Article  CAS  Google Scholar 

  221. O. Eterigho-Ikelegbe, H. Harrar, S. Bada, Rare earth elements from coal and coal discard – a review. Miner. Eng. 173, 107187 (2021). https://doi.org/10.1016/j.mineng.2021.107187

    Article  CAS  Google Scholar 

  222. A. Lozano, C. Ayora, A. Fernandez-Martinez, Sorption of rare earth elements onto Basaluminite: the role of sulfate and pH. Geochim. Cosmochim. Acta 258, 50–62 (2019). https://doi.org/10.1016/j.gca.2019.05.016

    Article  CAS  Google Scholar 

  223. P.L. Verplanck, D.K. Nordstrom, H.E. Taylor, B.A. Kimball, Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl. Geochem. 19, 1339–1354 (2004). https://doi.org/10.1016/j.apgeochem.2004.01.016

    Article  CAS  Google Scholar 

  224. C.H. Gammons, S.A. Wood, D.A. Nimick, Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH. Geochim. Cosmochim. Acta 69(15), 3747–3758 (2005). https://doi.org/10.1016/j.gca.2005.03.019

    Article  CAS  Google Scholar 

  225. S.A. Wood, C.H. Gammons, S.R. Parker, The behavior of rare earth elements in naturally and anthropogenically acidified waters. J. Alloys Compd. 418(1–2), 161–165 (2006). https://doi.org/10.1016/j.jallcom.2005.07.082

    Article  CAS  Google Scholar 

  226. M.L.B. Moraes, A. Murciego, E. Lvarez-Ayuso, A.C.Q. Ladeira, The role of Al13-polymers in the recovery of rare earth elements from acid mine drainage through pH neutralization. Appl. Geochem. 113, 104466 (2019). https://doi.org/10.1016/j.apgeochem.2019.104466

    Article  CAS  Google Scholar 

  227. S.A. Welch, A.G. Christy, L. Isaacson, D. Kirste, Mineralogical control of rare earth elements in acid sulfate soils. Geochim. Cosmochim. Acta 73, 44–64 (2009). https://doi.org/10.1016/j.gca.2008.10.017

    Article  CAS  Google Scholar 

  228. R. Pérez-López, J. Delgado, J.M. Nieto, B. Márquez-García, Rare earth element geochemistry of sulphide weathering in the São Domingos Mine Area (Iberian Pyrite Belt): a proxy for fluid-rock interaction and ancient mining pollution. Chem. Geol. 276, 29–40 (2010). https://doi.org/10.1016/j.chemgeo.2010.05.018

    Article  CAS  Google Scholar 

  229. A. Grawunder, D. Merten, G. Büchel, Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ. Sci. Pollut. Res. 21, 6812–6823 (2014). https://doi.org/10.1007/s11356-013-2107-x

    Article  CAS  Google Scholar 

  230. E.R. Sholkovitz, The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1(1), 1–34 (1995). https://doi.org/10.1007/BF01025229

    Article  CAS  Google Scholar 

  231. R.E. Hannigan, E.R. Sholkovitz, The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem. Geol. 175(3–4), 495–508 (2001). https://doi.org/10.1016/S0009-2541(00)00355-7

    Article  CAS  Google Scholar 

  232. E. Da Silva, E. Ferreira, I. Bobos, J. Matos, C. Patinha, A.P. Reis, E.C. Fonseca, Mineralogy and geochemistry of trace metals and REE in massive volcanic sulphide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal Mine Area (Iberian Pyrite Belt, Portugal). Appl. Geochem. 24, 383–401 (2009). https://doi.org/10.1016/j.apgeochem.2008.12.001

    Article  CAS  Google Scholar 

  233. K.A. Quinn, R.H. Byrne, J. Schijf, Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength. Mar. Chem. 99, 128–150 (2006). https://doi.org/10.1016/j.marchem.2005.05.011

    Article  CAS  Google Scholar 

  234. D.B. Johnson, K.B. Hallberg, Acid mine drainage remediation options: a review. Sci. Total Environ. 338, 3–14 (2005). https://doi.org/10.1016/j.scitotenv.2004.09.002

    Article  CAS  Google Scholar 

  235. J.G. Skousen, C.E. Zipper, A. Rose, P.F. Ziemkiewicz, R.W. Nairn, L.M. McDonald, R.L. Kleinmann, Review of passive systems for acid mine drainage treatment. Mine Water Environ. 36, 133–153 (2017). https://doi.org/10.1007/s10230-016-0417-1

    Article  CAS  Google Scholar 

  236. P.T. Behum, L. Lefticariu, K.S. Bender, Y.T. Segid, A.S. Burns, C.W. Pugh, Remediation of coal-mine drainage by a sulfate-reducing bioreactor: a case study from the Illinois Coal Basin, USA. Appl. Geochem. 26, S162–S166 (2011). https://doi.org/10.1016/j.apgeochem.2011.03.093

    Article  CAS  Google Scholar 

  237. P.L. Younger, S.A. Banwart, R.S. Hedin, Mine Water – Hydrology, Pollution, Remediation (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  238. J.G. Skousen, A. Sexstone, P.F. Ziemkiewicz, Acid mine drainage control and treatment, in Reclamation of Drastically Disturbed Lands, ed. by R.I. Barnhisel, R.G. Darmody, W.L. Daniels, (American Society of Agronomy Monograph 41, Madison, 2000), pp. 131–168. https://doi.org/10.2134/agronmonogr41.c6

    Chapter  Google Scholar 

  239. J. Weijma, C. Copini, C. Buisman, C. Schultz, Biological recovery of metals, sulfur and water in the mining and metallurgical industry, in Water Recycling and Recovery in Industry, ed. by P.N.L. Lens, L.W. Hulshoff Pol, P. Wilderer, T. Asano, (IWA Publishing, London, 2002)

    Google Scholar 

  240. R. Hedin, T. Weaver, N. Wolfe, K. Weaver, Passive treatment of acidic coal mine drainage: the Anna’s mine passive treatment complex. Mine Water Environ. 29(3), 165–175 (2010). https://doi.org/10.1007/s10230-010-0117-1

    Article  CAS  Google Scholar 

  241. Hedin Environmental, Optimizing the design and operation of self-flushing limestone systems for mine drainage treatment (2008). Retrieved from: http://files.dep.state.pa.us/Mining/Abandoned%20Mine%20Reclamation/AbandonedMinePortalFiles/InnovativeTechnologyGrantFinalReports/Flushing.pdf

  242. B. Erickson, Rare earth recovery. Chem. Eng. News 96(28), 28–33 (2018). https://asset-pdf.scinapse.io/prod/2871462933/2871462933.pdf

    Google Scholar 

  243. S.R. Sutton, A. Lanzirotti, M. Newville, M.L. Rivers, P. Eng, L. Lefticariu, Spatially resolved elemental analysis, spectroscopy and diffraction at the GSECARS sector at the advanced photon source. J. Environ. Qual. 46(6), 1158–1165 (2017). https://doi.org/10.2134/jeq2016.10.0401

    Article  CAS  Google Scholar 

  244. J.M. Bigham, U. Schwertmann, S.J. Traina, R.L. Winland, M. Wolf, Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta 60, 2111–2121 (1996). https://doi.org/10.1016/0016-7037(96)00091-9

    Article  CAS  Google Scholar 

  245. U. Schwertmann, L. Carlson, The pH-dependent transformation of schwertmannite to goethite at 25°C. Clay Mineral. 40, 63–66 (2005). https://doi.org/10.1180/0009855054010155

    Article  CAS  Google Scholar 

  246. J.P. Jolivet, C. Chanéac, D. Chiche, S. Cassaignon, O. Durupthy, J. Hernandez, Basic concepts of the crystallization from aqueous solutions: the example of aluminum oxy(hydroxi)des and aluminosilicates. Compt. Rendus Geosci. 343, 113–122 (2011). https://doi.org/10.1016/j.crte.2010.12.006

    Article  CAS  Google Scholar 

  247. A.E. Van Driessche, T.M. Stawski, L.G. Benning, M. Kellermeier, Chapter 12: Calcium sulfate precipitation throughout its phase diagram, in New Perspectives on Mineral Nucleation and Growth, (Springer, 2017), pp. 227–256. https://doi.org/10.1007/978-3-319-45669-0_12

    Chapter  Google Scholar 

  248. H. Tan, G. Zhang, P.J. Heaney, S.M. Webb, W.D. Burgos, Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems. Appl. Geochem. 25(3), 389–399 (2010). https://doi.org/10.1016/j.apgeochem.2009.12.006

    Article  CAS  Google Scholar 

  249. F. Luan, C.M. Santelli, C.M. Hansel, W.D. Burgos, Defining manganese(II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments. Appl. Geochem. 27(8), 1567–1578 (2012). https://doi.org/10.1016/j.apgeochem.2012.03.010

    Article  CAS  Google Scholar 

  250. J. Sánchez-España, I. Yusta, W.D. Burgos, Geochemistry of dissolved aluminum at low pH: hydrobasaluminite formation and interaction with trace metals, silica and microbial cells under anoxic conditions. Chem. Geol. 441, 124–137 (2016). https://doi.org/10.1016/j.chemgeo.2016.08.004

    Article  CAS  Google Scholar 

  251. U.S. Department of Energy (U.S. DOE), Critical materials strategy. Darby, Pennsylvania, U.S. Department of Energy report, DOE/PI-0009 (2011), 190 p. https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf

  252. G.H. Luttrell, M.J. Kiser, R.-H. Yoon, A. Noble, M. Rezaee, A. Bhagavatula, R.Q. Honaker, Field Survey of rare earth element concentrations in process streams produced by coal preparation plants in the eastern USA. Min. Metall. Explor. 36, 889–902 (2019). https://doi.org/10.1007/s42461-019-00124-5

    Article  Google Scholar 

  253. S. Das, G. Gaustad, A. Sekar, E. Williams, Techno-economic analysis of supercritical extraction of rare earth elements from coal ash. J. Clean. Prod. 189, 539–551 (2018). https://doi.org/10.1016/j.jclepro.2018.03.252

    Article  CAS  Google Scholar 

  254. M. Summers, The path to commercialization through techno-economics: presentation. U.S. Department of Energy, National Energy Technology Laboratory Project Review Meeting for Rare Earth Elements (REE) Program, April 10 (2018). https://netl.doe.gov/sites/default/files/netl-file/20180410_1030C_Presentation_Summers_NETL.pdf

  255. W. Sutterlin, Recovery of rare earth elements from coal mining waste materials: presentation. U.S. Department of Energy, National Energy Technology Laboratory Project Review Meeting for Rare Earth Elements (REE) Program, April 10 (2018). https://netl.doe.gov/sites/default/files/netl-file/20180410_0900C_Presentation_FE0030146_InventureRenewables.pdf

  256. Ellen MacArthur Foundation, Towards the circular economy 3 — accelerating the scale-up across global supply chains. Cowes, Isle of Wight, United Kingdom, Ellen MacArthur Foundation report, January (2014), 76 p. https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-3-accelerating-the-scale-up-across-global

  257. É. Lèbre, G. Corder, A. Golev, The role of the mining industry in a circular economy: a framework for resource management at the mine site level. J. Ind. Ecol. 21(3), 662–672 (2017)

    Article  Google Scholar 

  258. B. Folkedahl, Economic extraction and recovery of REEs and production of clean value-added products from low-rank coal fly ash. Poster, U.S. Department of Energy, National Energy Technology Laboratory Project Review Meeting for Rare Earth Elements (REE) Program, April 10 (2018). https://netl.doe.gov/sites/default/files/netl-file/2018_Poster-04_FE0031490_UNDEERC.pdf

  259. R.Q. Honaker, W. Zhang, J. Werner, A. Noble, G.H. Luttrell, R.H. Yoon, Enhancement of a process flowsheet for recovering and concentrating critical materials from bituminous coal sources. Min. Metall. Explor. 37(1), 3–20 (2020)

    Google Scholar 

  260. B.V. Hassas, M. Rezaee, S.V. Pisupati, Precipitation of rare earth elements from acid mine drainage by CO2 mineralization process. Chem. Eng. J. 399 (2020). https://doi.org/10.1016/j.cej.2020.125716

  261. R.Q. Honaker, W. Zhang, X. Yang, M. Rezaee, Conception of an integrated flowsheet for rare earth elements recovery from coal coarse refuse. Miner. Eng. 122, 233–240 (2018). https://doi.org/10.1016/j.mineng.2018.04.005

    Article  CAS  Google Scholar 

  262. W. Zhang, R.Q. Honaker, Calcination pretreatment effects on acid leaching characteristics of rare earth elements from middlings and coarse refuse material associated with a bituminous coal source. Fuel 249, 130–145 (2019). https://doi.org/10.1016/j.fuel.2019.03.063

    Article  CAS  Google Scholar 

  263. P.K. Sarswat, Z. Zhang, M.L. Free, Rare earth elements extraction from coal waste using a biooxidation approach, in Rare Metal Technology, ed. by G. Azimi, T. Ouchi, K. Forsberg, H. Kim, S. Alam, A. Abdullahi Baba, N.R. Neelameggah, (Springer, 2021), pp. 210–216. https://link.springer.com/book/10.1007%2F978-3-030-65489-4

    Google Scholar 

  264. U.S. Environmental Protection Agency (U.S. EPA), Section 404 of the Clean Water Act—Clean Water Act, Section 402: National Pollutant Discharge Elimination System (2021). https://www.epa.gov/cwa-404/clean-water-act-section-402-national-pollutant-discharge-elimination-system

  265. Internal Revenue Service, 26 CFR Part 1 [TD9944] RIN 1545–BP42 credit for carbon oxide sequestration. Fed. Regist. 86(10), 4728–4773 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Kolker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolker, A., Lefticariu, L., Anderson, S.T. (2024). Energy-Related Rare Earth Element Sources. In: Murty, Y.V., Alvin, M.A., Lifton, J. (eds) Rare Earth Metals and Minerals Industries. Springer, Cham. https://doi.org/10.1007/978-3-031-31867-2_3

Download citation

Publish with us

Policies and ethics