Skip to main content

A Systematic Approach to Improve the Efficiency of a CO2 Booster Refrigerating Machine by Optimising the Performance of the Scroll Compressor

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Industrial Engineering (ICIE 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 573 Accesses

Abstract

With the decreasing use of refrigerants with a high global warming potential, increasing the efficiency of refrigerating machines using natural working fluids is a very urgent task. The CO2 booster refrigerant cycle can be optimal for the fields of commercial refrigeration, climate engineering and heat pumps, but requires adaptation to regions with hot climates. Such solutions have already been tested by increasing the transcritical cycle efficiency through the use of an ejector and parallel compression. However the use of a scroll compressor in the transcritical cycle may be a good alternative to these methods. This solution, a little bit improves technical and economic indexes of the refrigerating machine, in the most part reducing capital and operational costs. When considering the prospect of improving the efficiency of a booster system with scroll compressor, it is necessary to address the issue of compressor performance optimisation. An issue of this kind can be referred to improving the efficiency of the booster system, at the expense of the internal characteristics of the refrigerating machine. Thus, in this paper, a conceptual approach to solve this problem based on system analysis of compressor interconnection as the main energy-consuming element of a refrigeration machine is considered. Development of conceptual model, allows to identify influence of various factors on operation of scroll compressor and to build adequate mathematical model, to choose or develop necessary methods of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleshanov, S.: Prospects for the development of carbon dioxide (CO2) refrigeration systems in Russia. Refrigeratin portal (2020). http://refportal.com/news/market-news/perspektivi-razvitiya-holodil-nih-sistem-na-diokside-ugleroda-so2-v-rossii/%20of%20company%20news//. Accessed 10 Feb. 2022

  2. World Guide to Transcritical CO2 Refrigeration (2020). https://issuu.com/shecco/docs/r744-guide. Accessed 16 Jan. 2022

  3. Pronin, V.A., Kovanov, A.V., Kalashnikova, E.A., Tsvetkov, V.A.: The prospect of using ozone-safe refrigerants with low global warming potential in scroll compressors. Part 1. Omsk Sci. Bull. Ser. Aviat.-Rocket Power Eng. 5(4), 9–16 (2021). https://doi.org/10.25206/2588-0373-2021-5-4-9-16

    Article  Google Scholar 

  4. Emerson Aims to Increase R744 Adoption in Small Stores by Simplifying Systems (2021). https://r744.com/emerson-aims-to-increase-r744-adoption-in-small-stores-by-simplifying-systems-dynamic-vapor-injection/. Accessed 26 Jan. 2022

  5. Evangelos, B., Christos, T.: Incorporation of an organic Rankine cycle in a transcritical booster CO2 refrigeration system. Int. J. Energy Res. 44, 7974–7988 (2020). https://doi.org/10.1002/er.5192

    Article  Google Scholar 

  6. Zhu, Y., Li, C., Zhang, F., Jiang, P.: Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system. Energy Convers. Manag. 151(N Engl A), 98–106 (2017)

    Article  Google Scholar 

  7. Taslimitaleghani, S., Sorin, M., Poncet, S.: Energy and exergy efficiencies of different configurations of the ejector-based CO2 refrigeration systems. Int. J. Enssergy Prod. Manag. 3(Med 1), 22–33 (2018). https://doi.org/10.2495/EQ-V3-N1-22-33

    Article  Google Scholar 

  8. Sevilla, D., Cuisano, J., Ortega, P.: Advanced exergetic analysis for design optimization of a CO2 refrigeration system using parallel compression. In: IEEE ANDESCON, pp 1–6 (2020)

    Google Scholar 

  9. Zheng, S., Wei, M., ChenXing, H., Song, P., Tian, R.: Flow characteristics of tangential leakage in a scroll compressor for automobile heat pump with CO2. Sci. China Technol. Sci. 64(Med 5), 971–983 (2021). https://doi.org/10.1007/s11431-020-1765-3

    Article  Google Scholar 

  10. Sun, S., Wang, X., Guo, P., Wu, K., Luo, X., Liu, G.: Numerical analysis of the transient leakage flow in axial clearance of a scroll refrigeration compressor. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 236, 47–61 (2019). https://doi.org/10.1177/0954408919870910

    Article  Google Scholar 

  11. Pereira, E., Deschamps, C.: Numerical analysis and correlations for radial and tangential leakage of gas in scroll compressors. Int. J. Refrig. Med. 110, 239–247 (2020)

    Article  Google Scholar 

  12. Kenji, Y., Hideto, N., Mihoko, S.: Development of large capacity CO2 scroll compressor. In: International Compressor Engineering Conference. Paper 1836 (2008). https://docs.lib.purdue.edu/icec/1836. Accessed 10 Jan 2022

  13. Minikaev, A., Yerezhep, D., Zhignovskaia1, D., Pronin, V., Kovanov, A.: Power interactions of scroll compressor elements. In: IOP Conference Series: Materials Science and Engineering 826:012022 IOP (2020). https://doi.org/10.1088/1757-899X/826/1/012022

  14. Zheng, S., Wei, M., Song, P., Hu, C., Tian, R.: Thermodynamics and flow unsteadiness analysis of trans-critical CO2 in a scroll compressor for mobile heat pump air-conditioning system. Appl. Therm. Eng. 175, 115368 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115368

    Article  Google Scholar 

  15. Hidaka, A., Ikeda, A., Morimoto, T., Koura, O., Matsui, M.: Axial and Radial force control for a CO2 scroll expander. HVAC&R Res. 15(4), 759–770 (2009). https://doi.org/10.1080/10789669.2009.10390862

    Article  Google Scholar 

  16. Hirofumi, Y., Atsushi, S., Yoshiyuki, F., Takashi, M., Noriaki, I.: Clearance control of scroll compressor for CO2 refrigerant. In: International Compressor Engineering Conference. Paper 1848 (2008). https://docs.lib.purdue.edu/icec/1848/. Accessed 12 Sept 2020

  17. Blunier, B.G., Cirrincione, Y., Hervé, A., Miraoui, A.: New analytical and dynamical model of a scroll compressor with experimental validation. Int. J. Refrig 32(5), 874–891 (2008). https://doi.org/10.1016/j.ijrefrig.2008.11.009

    Article  Google Scholar 

  18. Chen, Y., Halm, N.P., Groll, E.A., Braun, J.E.: Mathematical modeling of scroll compressors-Part I: compression process modeling. Int. J. Refrig 25(6), 731–750 (2002). https://doi.org/10.1016/S0140-7007(01)00071-8

    Article  Google Scholar 

  19. Chen, Y., Halm, N.P., Groll, E.A., Braun, J.E.: Mathematical modeling of scroll compressors-Part II: overall scroll compressor modeling. Int. J. Refrig 25(6), 751–764 (2002). https://doi.org/10.1016/S0140-7007(01)00072-X

    Article  Google Scholar 

  20. Tatarenko, Y.: Introduction to mathematical modeling of characteristics of steam compressor refrigerating machines. Educ. Methodical Manual. ITMO SPb 2015, 7–62 (2015)

    Google Scholar 

  21. Shcherba, V.E.: Theory, Calculation and Design of Volumetric Reciprocating Compressors. Textbook for undergraduate and graduate studies. 2nd (edn.), expanded. Moscow. Yurayt, pp. 136–311 (2019)

    Google Scholar 

  22. Kosachevsky, V.A.: Development of a calculation method and analysis of the working process of scroll compressors Dissertation, State Technical University of Saint-Petersburg (1998)

    Google Scholar 

  23. Raikov, A., Bronstein, M., Salikeev, S., Burmistrov, A.: Influence of the velocity of the orbital motion of the spiral on the overflow in a spiral vacuum pump. Bull. Bauman Moscow State Tech. Univ. Ser. Mech. Eng. 4(97), 73–82 (2014)

    Google Scholar 

  24. Burmistrov, A., Bronstein, M., Salikeev, S., Raikov, A., Yakupov, R.: Calculation of the conductivity of the profile channel of a spiral vacuum pump under the molecular regime of gas flow. News of higher educational institutions. Energy problems, pp. 3–10 (2013)

    Google Scholar 

  25. Burmistrov, A., Bronstein, M., Raikov, A., Salikeev, S.: Numerical modeling of gas flows in slit channels with moving walls at pressures below atmospheric. Bull. Kazan Technol. Univ. 19(5), 116–120 (2016)

    Google Scholar 

  26. Pronin, V., Tsvetkov, V., Molodova, Y., Zhignovskaya, D.: The effect of the mobility of the slit wall on the gas flow in the radial gap “piston ring-cylinder mirror” of the compressor. Bull. MAX. Med 2, 19–25 (2020)

    Google Scholar 

  27. Pronin, V.A.: Screw single-rotor compressors for refrigeration and pneumatics: Dissertation State academy of cold and food technology of Saint-Petersburg (1998)

    Google Scholar 

  28. Pronin, V., Kuznetsov, Y., Zhignovskaia, D., Minikaev, A., Yerezhep, D.: Improving methodology calculating the leakages compressible environment in the working part of a screw compressor. AIP Conf. Proc. 2141, 030010 (2019)

    Article  Google Scholar 

  29. Paranin, Y.: Improvement of the calculation method of the working process of a spiral compressor of dry compression using the results of experimental studies: Dissertation, University KNRTU of Kazan (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kovanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pronin, V.A., Kovanov, A.V., Tsvetkov, V.A., Mikhailova, E.N. (2023). A Systematic Approach to Improve the Efficiency of a CO2 Booster Refrigerating Machine by Optimising the Performance of the Scroll Compressor. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-14125-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14125-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14124-9

  • Online ISBN: 978-3-031-14125-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics