Skip to main content

Catalytic Upgrading of Heavy Oil Resources Under Methane

  • Chapter
  • First Online:
Methane Activation and Utilization in the Petrochemical and Biofuel Industries
  • 332 Accesses

Abstract

Due to the scarcity of conventional oil resources and increased global energy consumption, unconventional oil resources with abundant reserves such as heavy oil are drawing more attention in the last decades. However, because of the high density and viscosity of unconventional oil and conventional hydrotreatment, it is critical to produce transportable oil product with better quality, which consumes high pressure of expensive hydrogen. To solve this issue, a novel idea is to replace hydrogen with another hydrogen donor such as methane. This chapter included several studies that confirmed the catalytic upgrading of heavy oil that can be conducted under methane atmosphere. Over optimized catalyst, co-fed methane can be nonoxidatively activated to provide hydrogen for heavy oil upgrading under low-temperature and low-pressure reaction condition, and the quality of collected oil product is greatly enhanced in terms of viscosity, density, and total acid number. Due to the complex composition of bitumen, the related model compound studies for this process are also introduced in this chapter. In general, this technology provides a cost-effective solution for heavy oil upgrading, which will have great impact on petrochemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Gray, Upgrading Oilsands Bitumen and Heavy Oil (University of Alberta, Edmonton, AB, 2015)

    Google Scholar 

  2. G. Belyk, D. Burgart, B. Jablonski, J. Heida, T. Kaiser, R. Bernar, B. Whitelaw, Heavy Oil 101. Participant Handbook (Canadian Heavy Oil Associations, 2013)

    Google Scholar 

  3. M. Mech, A comprehensive guide to the alberta oil sands. Understanding the environmental and human impacts, export implications, and political, economic, and industry implications, and political, economic, and industry influences. Green Party of Canada 2011

    Google Scholar 

  4. E. Furimsky, Catalysts for Upgrading Heavy Petroleum Feeds (Elsevier, 2007)

    Google Scholar 

  5. G.J. Hutchings, M.S. Scurrell, J.R. Woodhouse, Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 18, 251–283 (1989)

    Article  Google Scholar 

  6. J.S. Lee, S.T. Oyama, Oxidative coupling of methane to higher hydrocarbons. Catal. Rev. Sci. Eng. 30(2), 249–280 (1988)

    Article  Google Scholar 

  7. J.H. Lunsford, The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. Engl. 34(9), 970–980 (1995)

    Article  Google Scholar 

  8. Y.G. Kolyagin, I.I. Ivanova, V.V. Ordomsky, A. Gedeon, Y.A. Pirogov, Methane activation over Zn-modified MFI zeolite: NMR evidence for Zn− methyl surface species formation. J. Phys. Chem. C 112(50), 20065–20069 (2008)

    Article  Google Scholar 

  9. Y. Xu, X. Bao, L. Lin, Direct conversion of methane under nonoxidative conditions. J. Catal. 216(1–2), 386–395 (2003)

    Article  Google Scholar 

  10. Y. Xu, L. Lin, Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Appl. Catal. A Gen. 188(1–2), 53–67 (1999)

    Article  Google Scholar 

  11. X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184), 616–619 (2014)

    Article  Google Scholar 

  12. D. Wang, J.H. Lunsford, M.P. Rosynek, Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J. Catal. 169(1), 347–358 (1997)

    Article  Google Scholar 

  13. V.R. Choudhary, A.K. Kinage, T.V. Choudhary, Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 275(5304), 1286–1288 (1997)

    Article  Google Scholar 

  14. O.A. Anunziata, G.G. Mercado, L.B. Pierella, Improvement of methane activation using n-hexane as co-reactant over Zn/HZSM-11 zeolite. Catal. Commun. 5(8), 401–405 (2004)

    Article  Google Scholar 

  15. O.A. Anunziata, G.V.G. Mercado, L.B. Pierella, Catalytic activation of methane using n-pentane as co-reactant over Zn/H-ZSM-11 zeolite. Catal. Lett. 87(3), 167–171 (2003)

    Article  Google Scholar 

  16. V.R. Choudhary, K.C. Mondal, S.A.R. Mulla, Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. Angew. Chem. 117(28), 4455–4459 (2005)

    Article  Google Scholar 

  17. A.A. Gabrienko, S.S. Arzumanov, I.B. Moroz, A.V. Toktarev, W. Wang, A.G. Stepanov, Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state NMR. J. Phys. Chem. C 117(15), 7690–7702 (2013)

    Article  Google Scholar 

  18. M.V. Luzgin, V.A. Rogov, S.S. Arzumanov, A.V. Toktarev, A.G. Stepanov, V.N. Parmon, Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew. Chem. 120(24), 4635–4638 (2008)

    Article  Google Scholar 

  19. M.V. Luzgin, V.A. Rogov, S.S. Arzumanov, A.V. Toktarev, A.G. Stepanov, V.N. Parmon, Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: How does it occur? Catal. Today 144(3–4), 265–272 (2009)

    Article  Google Scholar 

  20. S. Al-Khattaf, S.A. Ali, A.M. Aitani, N. Žilková, D. Kubička, J. Čejka, Recent advances in reactions of alkylbenzenes over novel zeolites: The effects of zeolite structure and morphology. Catal. Rev. 56(4), 333–402 (2014)

    Article  Google Scholar 

  21. H. Kitagawa, Y. Sendoda, Y. Ono, Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. J. Catal. 101(1), 12–18 (1986)

    Article  Google Scholar 

  22. S.M. Csicsery, Shape-selective catalysis in zeolites. Zeolites 4(3), 202–213 (1984)

    Article  Google Scholar 

  23. W.E. Farneth, R.J. Gorte, Methods for characterizing zeolite acidity. Chem. Rev. 95(3), 615–635 (1995)

    Article  Google Scholar 

  24. Y.V. Kissin, Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes. Catal. Rev. 43(1–2), 85–146 (2001)

    Article  Google Scholar 

  25. B. Xu, C. Sievers, S.B. Hong, R. Prins, J.A. van Bokhoven, Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244(2), 163–168 (2006)

    Article  Google Scholar 

  26. A. Primo, H. Garcia, Zeolites as catalysts in oil refining. Chem. Soc. Rev. 43(22), 7548–7561 (2014)

    Article  Google Scholar 

  27. W. Vermeiren, J.P. Gilson, Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 52(9), 1131–1161 (2009)

    Article  Google Scholar 

  28. J.B. Joo, A. Vu, Q. Zhang, M. Dahl, M. Gu, F. Zaera, Y. Yin, A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural. ChemSusChem 6(10), 2001–2008 (2013)

    Article  Google Scholar 

  29. N.A. Khan, D.K. Mishra, I. Ahmed, J.W. Yoon, J.-S. Hwang, S.H. Jhung, Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Appl. Catal. A Gen. 452, 34–38 (2013)

    Article  Google Scholar 

  30. C. Liu, S. Lee, D. Su, Z. Zhang, L. Pfefferle, G.L. Haller, Synthesis and characterization of nanocomposites with strong interfacial interaction: Sulfated ZrO2 nanoparticles supported on multiwalled carbon nanotubes. J. Phys. Chem. C 116(41), 21742–21752 (2012)

    Article  Google Scholar 

  31. A. Guo, C. Wu, P. He, Y. Luan, L. Zhao, W. Shan, W. Cheng, H. Song, Low-temperature and low-pressure non-oxidative activation of methane for upgrading heavy oil. Cat. Sci. Technol. 6(4), 1201–1213 (2016)

    Article  Google Scholar 

  32. P. He, Y. Luan, L. Zhao, W. Cheng, C. Wu, S. Chen, H. Song, Catalytic bitumen partial upgrading over Ag-Ga/ZSM-5 under methane environment. Fuel Process. Technol. 156, 290–297 (2017)

    Article  Google Scholar 

  33. S.M.T. Almutairi, B. Mezari, E.A. Pidko, P.C.M.M. Magusin, E.J.M. Hensen, Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. J. Catal. 307, 194–203 (2013)

    Article  Google Scholar 

  34. D. Yi, H. Huang, X. Meng, L. Shi, Adsorption–desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites. Appl. Catal. B Environ. 148, 377–386 (2014)

    Article  Google Scholar 

  35. W. Xu, S.J. Miller, P.K. Agrawal, C.W. Jones, Zeolite topology effects in the alkylation of phenol with propylene. Appl. Catal. A Gen. 459, 114–120 (2013)

    Article  Google Scholar 

  36. R. Buzzoni, S. Bordiga, G. Ricchiardi, C. Lamberti, A. Zecchina, G. Bellussi, Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: An IR investigation. Langmuir 12(4), 930–940 (1996)

    Article  Google Scholar 

  37. V.P. Glazunov, S.E. Odinokov, Infrared spectra of pyridinium salts in solution—I. the region of middle frequencies. Spectrochim. Acta A: Mol. Spectrosc. 38(4), 399–408 (1982)

    Article  Google Scholar 

  38. T.F. Degnan, The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. J. Catal. 216(1), 32–46 (2003)

    Article  Google Scholar 

  39. J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J. Catal. 279(2), 257–268 (2011)

    Article  Google Scholar 

  40. P.E. Savage, M.T. Klein, Asphaltene reaction pathways. 2. Pyrolysis of n-pentadecylbenzene. Ind. Eng. Chem. Res. 26(3), 488–494 (1987)

    Article  Google Scholar 

  41. P.E. Savage, D.J. Korotney, Pyrolysis kinetics for long-chain n-alkylbenzenes: Experimental and mechanistic modeling results. Ind. Eng. Chem. Res. 29(3), 499–502 (1990)

    Article  Google Scholar 

  42. T. Baba, Y. Abe, Metal cation–acidic proton bifunctional catalyst for methane activation: Conversion of 13CH4 in the presence of ethylene over metal cations-loaded H-ZSM-5. Appl. Catal. A Gen. 250(2), 265–270 (2003)

    Article  Google Scholar 

  43. T.V. Choudhary, E. Aksoylu, D. Wayne Goodman, Nonoxidative activation of methane. Catal. Rev. 45(1), 151–203 (2003)

    Article  Google Scholar 

  44. B. Bachiller-Baeza, J.A. Anderson, FTIR and reaction studies of styrene and toluene over silica–zirconia-supported heteropoly acid catalysts. J. Catal. 212(2), 231–239 (2002)

    Article  Google Scholar 

  45. T. Nobukawa, M. Yoshida, S. Kameoka, S.-I. Ito, K. Tomishige, K. Kunimori, In-situ observation of reaction intermediate in the selective catalytic reduction of N2O with CH4 over Fe ion-exchanged BEA zeolite catalyst for the elucidation of its reaction mechanism using FTIR. J. Phys. Chem. B 108(13), 4071–4079 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, H., Jarvis, J., Meng, S., Xu, H., Li, Z., Li, W. (2022). Catalytic Upgrading of Heavy Oil Resources Under Methane. In: Methane Activation and Utilization in the Petrochemical and Biofuel Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-88424-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88424-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88423-9

  • Online ISBN: 978-3-030-88424-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics