Skip to main content

Role of Modern Biotechnology in the Era of River Water Pollution

  • Chapter
  • First Online:
River Health and Ecology in South Asia

Abstract

The aquatic environment is the governance system for sustenance of life on earth. Nowadays, aquatic bodies are under serious threat throughout the globe due to industrialization and other anthropogenic activities. Pollution has been a stress for aquatic organisms, plants, and humans along with the pressure from changing climatic conditions. Freshwater is only 2.5% of the total water available on the earth and out of total freshwater 1.2 is only available on the surface rest are either in glacial form or in groundwater. The protection of high-quality freshwater is essential to maintain a healthy riverine ecosystem. This is an approach to implement advanced scientific technologies such as; microbiology, molecular biology, biotechnology, bioinformatics, metagenomics and other omics platforms to observe, analyze, and manage the information obtained from aquatic ecosystems to develop superior biotechnological methods to maintain the quality of freshwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh B, Srivastava P, et al (2013) Remediation of lindane by Jatropha curcas L: utilization of multipurpose species for rhizoremediation. Biomass and Bioenergy 51:189–193

    Article  CAS  Google Scholar 

  • Abhilash PC, Singh N (2010) Withania somnifera Dunal-mediated dissipation of lindane from simulated soil: implications for rhizoremediation of contaminated soil. J Soils Sediments 10: 272–282

    Article  CAS  Google Scholar 

  • Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E (2018) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616: 326–334

    Article  Google Scholar 

  • Abou-Zeid D-M, Müller R-J, Deckwer W-D (2004) Biodegradation of aliphatic homopolyesters and aliphatic− aromatic copolyesters by anaerobic microorganisms. Biomacromolecules 5: 1687–1697

    Article  CAS  Google Scholar 

  • Aird D, Ross MG, Chen W-S, et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12: 1–14

    Article  Google Scholar 

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6: 987–998

    CAS  Google Scholar 

  • Andersson S (2009) Characterization of bacterial biofilms for wastewater treatment

    Google Scholar 

  • Arango-Argoty G, Singh G, Heath LS, et al (2016) MetaStorm: a public resource for customizable metagenomics annotation. PLoS One 11: e0162442

    Google Scholar 

  • Behera BK, Chakraborty HJ, Patra B, et al (2020a) Metagenomic Analysis Reveals Bacterial and Fungal Diversity and Their Bioremediation Potential From Sediments of River Ganga and Yamuna in India. Front Microbiol 11: 2531

    Article  Google Scholar 

  • Behera BK, Patra B, Chakraborty HJ, et al (2020b) Metagenome analysis from the sediment of river Ganga and Yamuna: In search of beneficial microbiome. PLoS One 15: e0239594

    Google Scholar 

  • Brandariz-Fontes C, Camacho-Sanchez M, Vila C, et al (2015) Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Sci Rep 5: 1–5

    Article  Google Scholar 

  • Briceño G, Schalchli H, Rubilar O, et al (2016) Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere 156: 195–203

    Article  Google Scholar 

  • Brown BL, LePrell R V, Franklin RB, et al (2015) Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River. Stand Genomic Sci 10: 1–14

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581–583

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336

    Article  CAS  Google Scholar 

  • Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K (2014) Cadmium removal by Lemna minor and Spirodela polyrhiza. Int J Phytoremediation 16: 1119–1132

    Article  CAS  Google Scholar 

  • Chirnside AEM, Ritter WF, Radosevich M (2011) Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl Environ Soil Sci 2011:

    Google Scholar 

  • Chuluun B, Iamchaturapatr J, Rhee J-S (2009) Phytoremediation of organophosphorus and organochlorine pesticides by Acorus gramineus. Environ Eng Res 14: 226–236

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145

    Article  CAS  Google Scholar 

  • Cydzik-Kwiatkowska A, Zielińska M (2016) Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 32: 66

    Article  Google Scholar 

  • Das BK, Behera BK, Chakraborty HJ, et al (2020) Metagenomic study focusing on antibiotic resistance genes from the sediments of River Yamuna. Gene 758: 144951

    Article  CAS  Google Scholar 

  • Dasgupta D, Ghosh R, Sengupta TK (2013) Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. Int Sch Res Not 2013:

    Google Scholar 

  • Dosnon-Olette R, Couderchet M, Eullaffroy P (2009) Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Ecotoxicol Environ Saf 72: 2096–2101

    Article  CAS  Google Scholar 

  • Dubey KK, Fulekar MH (2013) Investigation of potential rhizospheric isolate for cypermethrin degradation. 3 Biotech 3: 33–43

    Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996–998

    Article  CAS  Google Scholar 

  • El Bestawy E, Ahmed A-H, Amer R, Kashmeri RA (2014) Decontamination of domestic wastewater using suspended individual and mixed bacteria in batch system. J Bioremediation Biodegredation 5: 1

    Google Scholar 

  • El-Rakaiby M, Essam T, Hashem A (2013) Isolation and characterization of relevant algal and bacterial strains from Egyptian environment for potential use in photosynthetically aerated wastewater treatment. J Bioremediation Biodegrad 4:

    Google Scholar 

  • Fernandez RT, Kort DR, Cregg BM, et al (2012) Remediation of metalaxyl, trifluralin, and nitrate from nursery runoff using container-grown woody ornamentals and phytoremediation areas. Ecol Eng 47: 254–263

    Article  Google Scholar 

  • Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere 173: 359–367

    Article  CAS  Google Scholar 

  • Gent MPN, White JC, Parrish ZD, et al (2007) Uptake and translocation of p, p′-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environ Toxicol Chem An Int J 26: 2467–2475

    Article  CAS  Google Scholar 

  • Ghai R, Rodŕíguez-Valera F, McMahon KD, et al (2011) Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One 6: e23785

    Google Scholar 

  • Guimarães FP, Aguiar R, Karam D, et al (2011) Potential of macrophytes for removing atrazine from aqueous solution. Planta daninha 29: 1137–1147

    Article  Google Scholar 

  • Hamner S, Brown BL, Hasan NA, et al (2019) Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int J Environ Res Public Health 16: 1097

    Article  CAS  Google Scholar 

  • Inyinbor AA, Adekola FA, Olatunji GA (2016) Liquid phase adsorption of rhodamine B dye onto acid-treated raphia hookeri fruit epicarp: isotherms, kinetics and thermodynamics studies. South African J Chem 69: 218–226

    Article  CAS  Google Scholar 

  • Jiang X, Mingchao MA, Jun LI, et al (2008) Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci Front 15: 163–168

    Article  CAS  Google Scholar 

  • Joo J-H, Hassan SHA, Oh S-E (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegradation 64: 734–741

    Article  CAS  Google Scholar 

  • Kabra AN, Ji M-K, Choi J, et al (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ Sci Pollut Res 21:12270–12278

    Article  CAS  Google Scholar 

  • Kao W, Chiu Y, Chang C, Chang J (2006) Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol Prog 22: 1256–1264

    Article  CAS  Google Scholar 

  • Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics service for analysis of microbial community structure and function. In: Microbial environmental genomics (MEG). Springer, pp 207–233

    Google Scholar 

  • Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology 153: 4061–4073

    Article  CAS  Google Scholar 

  • Ladislas S, Gerente C, Chazarenc F, et al (2015) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80: 85–91

    Article  Google Scholar 

  • Ma Q, Qu Y, Shen W, et al (2015) Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour Technol 179: 436–443

    Article  CAS  Google Scholar 

  • Mangwani N, Shukla SK, Rao TS, Das S (2014) Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids surfaces B Biointerfaces 114: 301–309

    Article  CAS  Google Scholar 

  • Maqbool Z, Hussain S, Imran M, et al (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23: 16904–16925

    Article  Google Scholar 

  • Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124: 375–378

    Article  CAS  Google Scholar 

  • Mittal P, PK VP, Dhakan DB, et al (2019) Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes. Environ Microbiome 14: 1–12

    Google Scholar 

  • Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KSB (2016) Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere 148: 300–306

    Article  CAS  Google Scholar 

  • Mitton FM, Miglioranza KSB, Gonzalez M, et al (2014) Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecol Eng 71: 501–508

    Article  Google Scholar 

  • Mohamed AT, El-Hussein AA, El-Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 10: 274–279

    Article  CAS  Google Scholar 

  • Moore MT, Locke MA (2012) Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linneaus) germination and seedling growth. Bull Environ Contam Toxicol 89: 292–295

    Article  CAS  Google Scholar 

  • Mori T, Wang J, Tanaka Y, et al (2017) Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater 321: 586–590

    Article  CAS  Google Scholar 

  • Mukherjee I, Kumar A (2012) Phytoextraction of endosulfan a remediation technique. Bull Environ Contam Toxicol 88: 250–254

    Article  CAS  Google Scholar 

  • Nguyen HTT, Le VQ, Hansen AA, et al (2011) High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiol Ecol 76: 256–267

    Article  CAS  Google Scholar 

  • Nielsen PH, Mielczarek AT, Kragelund C, et al (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44: 5070–5088

    Article  CAS  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, et al (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41: 2271–2300

    Article  CAS  Google Scholar 

  • Palmate SS, Pandey A, Kumar D, et al (2017) Climate change impact on forest cover and vegetation in Betwa Basin, India. Appl Water Sci 7: 103–114

    Article  Google Scholar 

  • Park H, Murthy S, Bott C, et al (2014) Nationwide metagenome survey of anammox processes via high-throughput next generation sequencing (NGS): 2012-2013. Proc water Environ Fed 2014: 2366–2371

    Article  Google Scholar 

  • Peng X, Huang J, Liu C, et al (2012) Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain, BP-H-02. J Hazard Mater 213: 216–221

    Article  Google Scholar 

  • Qin J, Li R, Raes J, et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65

    Article  CAS  Google Scholar 

  • Rai PK, Rana RS, Singh P, et al (2015) Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Springer

    Google Scholar 

  • Rana RS, Singh P, Kandari V, et al (2017) A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Springer

    Google Scholar 

  • Reddington K, Eccles D, O’Grady J, et al (2020) Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. Oxford University Press

    Google Scholar 

  • Reddy B, Dubey SK (2019) River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: High throughput metagenomic approach. Elsevier

    Google Scholar 

  • Rozitis D, Strade E (2015) COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Citeseer

    Google Scholar 

  • Ruiz-Moreno HA, López-Tamayo AM, Caro-Quintero A, et al (2019) Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Elsevier

    Book  Google Scholar 

  • Samal K, Kar S, Trivedi S (2019) Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. J. Environ Manage 251: 109550.

    Google Scholar 

  • Samson R, Shah M, Yadav R, et al (2019) Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. Sci Total Environ 674: 288–299

    Article  CAS  Google Scholar 

  • Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents—identification and degradation potential. Process Biochem 39: 1001–1006

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541

    Article  CAS  Google Scholar 

  • Sgountzos IN, Pavlou S, Paraskeva CA, Payatakes AC (2006) Growth kinetics of Pseudomonas fluorescens in sand beds during biodegradation of phenol. Biochem Eng J 30: 164–173

    Article  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319: 291–297

    Article  CAS  Google Scholar 

  • Sivasamy A, Sundarabal N (2011) Biosorption of an azo dye by Aspergillus niger and Trichoderma sp. fungal biomasses. Curr Microbiol 62: 351–357

    Article  CAS  Google Scholar 

  • Somtrakoon K, Kruatrachue M, Lee H (2014) Phytoremediation of endosulfan sulfate-contaminated soil by single and mixed plant cultivations. Water, Air, Soil Pollut 225: 1–13

    Article  CAS  Google Scholar 

  • Sriu Naik S, Pydi Setty Y (2011) Biological Denitrification of wastewater in aFBBRd by immobilization of Pseudomonas stutzeri using poly propylene granules. Int J Biotechnol Appl 3: 106–109

    Article  Google Scholar 

  • Sun H, Xu J, Yang S, et al (2004) Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere 54: 569–574

    Article  CAS  Google Scholar 

  • Syuhaida AWA, Norkhadijah SIS, Praveena SM, Suriyani A (2014) The comparison of phytoremediation abilities of water mimosa and water hyacinth

    Google Scholar 

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37: 474–486

    Article  Google Scholar 

  • Tatarko M, Bumpus JA (1998) Biodegradation of congo red by Phanerochaete chrysosporium. Water Res 32: 1713–1717

    Article  CAS  Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21: 637–644

    Article  CAS  Google Scholar 

  • Tsuruta T (2004) Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol 50: 221–228

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, et al (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484

    Article  CAS  Google Scholar 

  • Villaverde J, Rubio-Bellido M, Merchán F, Morillo E (2017) Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J Environ Manage 188: 379–386

    Article  CAS  Google Scholar 

  • Wang FY, Tong RJ, Shi ZY, et al (2011) Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One 6: e16949

    Google Scholar 

  • Wang Q, Zhang W, Li C, Xiao B (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Sci Technol 66: 1282–1288

    Article  CAS  Google Scholar 

  • Wang Z, Zhang X-X, Lu X, et al (2014) Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS One 9: e113603

    Google Scholar 

  • Water act 1974- this is the act of Govt. of India and is available in the website (https://legislative.gov.in/actsofparliamentfromtheyear/water-prevention-and-control-pollution-act-1974)

  • White JC, Parrish ZD, Isleyen M, et al (2005) Uptake of weathered p, p′-DDE by plant species effective at accumulating soil elements. Microchem J 81:148–155

    Article  CAS  Google Scholar 

  • Wisdom AS (1966) law on the pollution of waters

    Google Scholar 

  • Wu Y, He J, Yang L (2010) Evaluating adsorption and biodegradation mechanisms during the removal of microcystin-RR by periphyton. Environ Sci Technol 44: 6319–6324

    Article  CAS  Google Scholar 

  • Wu Y, Li T, Yang L (2012) Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresour Technol 107: 10–18

    Article  CAS  Google Scholar 

  • Xu X-J, Sun J-Q, Nie Y, Wu X-L (2015) Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere 125: 33–40

    Article  CAS  Google Scholar 

  • Ying W, Ye T, Bin H, et al (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19: 222–225

    Article  Google Scholar 

  • Yu YL, Chen YX, Luo YM, et al (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50: 771–774

    Article  CAS  Google Scholar 

  • Zhou Y, Tigane T, Li X, et al (2013) Hexachlorobenzene dechlorination in constructed wetland mesocosms. Water Res 47: 102–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rout, A.K. et al. (2022). Role of Modern Biotechnology in the Era of River Water Pollution. In: Patra, B.C., Shit, P.K., Bhunia, G.S., Bhattacharya, M. (eds) River Health and Ecology in South Asia. Springer, Cham. https://doi.org/10.1007/978-3-030-83553-8_4

Download citation

Publish with us

Policies and ethics