Skip to main content

Design and Synthesis of Nanostructured Photocatalysts for Water Remediation

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Abstract

The presence of pollutants in aquatic environment evoked a major challenge among the whole scientific community. Meanwhile, solar energy-driven nanostructured photocatalysts are considered as most promising materials for water remediation as it utilizes natural sunlight as a source of energy and produces fewer or no toxic by-products. The nanostructured materials as photocatalysts are gaining tremendous interest due to their unique properties, such as high surface area, tuneable band gap, and strong oxidation ability. But the comparatively low photocatalytic efficiency remains a crucial drawback for the practical industrial application of the nanostructured photocatalysts. To solve this issue, various approaches have been utilized for the designing of advanced multifunctional photocatalysts. Predominantly, combing a semiconductor material with metal or semiconductor to form a nanocomposite photocatalyst has become a viable approach for designing of multifunctional highly efficient photocatalyst. Herein, we have elaborately showcased recent advances in the development of novel multifunctional nanostructured photocatalyst for water remediation via numerous approaches. Moreover, a concise summary of the present challenges and an outlook for the designing and synthesis of nanostructured photocatalyst in the field of water remediation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamali M, Persson KM, Costa ME, Capela I (2019) Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environ Int 125:261–276. https://doi.org/10.1016/j.envint.2019.01.055

  2. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002

  3. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  4. Mangalam J, Kumar M, Sharma M, Joshi M (2019) High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment. Nano Struct Nano Objects 17:58–66. https://doi.org/10.1016/j.nanoso.2018.11.003

    Article  CAS  Google Scholar 

  5. Sharma M, Sondhi H, Krishna R et al (2020) Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. Environ Sci Pollut Res 27:32076–32087. https://doi.org/10.1007/s11356-020-08849-3

    Article  CAS  Google Scholar 

  6. Behl K, SeshaCharan P, Joshi M et al (2020) Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresour Technol 304:122993. https://doi.org/10.1016/j.biortech.2020.122993

  7. Sharma M, Poddar M, Gupta Y et al (2020) Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite. Mater Today Chem 17:100336. https://doi.org/10.1016/j.mtchem.2020.100336

  8. Hube S, Eskafi M, Hrafnkelsdóttir KF et al (2020) Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci Total Environ 710:136375. https://doi.org/10.1016/j.scitotenv.2019.136375

  9. Santana-Viera S, Padrón MET, Sosa-Ferrera Z, Santana-Rodríguez JJ (2020) Quantification of cytostatic platinum compounds in wastewater by inductively coupled plasma mass spectrometry after ion exchange extraction. Microchem J 157:104862. https://doi.org/10.1016/j.microc.2020.104862

  10. Yu M, Wang J, Tang L et al (2020) Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications. Water Res 175:115673. https://doi.org/10.1016/j.watres.2020.115673

  11. Li J, Cui W, Chen P et al (2020) Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl Catal B Environ 260:118130. https://doi.org/10.1016/j.apcatb.2019.118130

  12. Hojamberdiev M, Czech B, Göktaş AC et al (2020) SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. J Alloys Compd 827:154339. https://doi.org/10.1016/j.jallcom.2020.154339

  13. Bahmani M, Dashtian K, Mowla D et al (2020) UiO-66(Ti)-Fe3O4-WO3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor. J Hazard Mater 393:122360. https://doi.org/10.1016/j.jhazmat.2020.122360

  14. ur Rehman A, Aadil M, Zulfiqar S et al (2020) Fabrication of binary metal doped CuO nanocatalyst and their application for the industrial effluents treatment. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.11.064

  15. Franco P, Sacco O, De Marco I et al (2020) Photocatalytic degradation of eriochrome black-T azo dye using Eu-doped ZnO prepared by supercritical antisolvent precipitation route: a preliminary investigation. Top Catal 63:1193–1205. https://doi.org/10.1007/s11244-020-01279-y

    Article  CAS  Google Scholar 

  16. Walczykowski P, Jenerowicz A, Orych A (2013) A review on remote sensing methods of detecting physical water pollutants

    Google Scholar 

  17. Borah P, Kumar M, Devi P (2020) Chapter 2—types of inorganic pollutants: metals/metalloids, acids, and organic forms. In: Devi P, Singh P, Kansal SK (eds) Inorganic pollutants in water. Elsevier, pp 17–31

    Google Scholar 

  18. Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J Nanomater 2014:617405. https://doi.org/10.1155/2014/617405

  19. Natarajan V, Karunanidhi M, Raja B (2020) A critical review on radioactive waste management through biological techniques. Environ Sci Pollut Res 27:29812–29823. https://doi.org/10.1007/s11356-020-08404-0

    Article  CAS  Google Scholar 

  20. Rani P, Kumar V, Singh PP et al (2020) Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ Int 143:105924. https://doi.org/10.1016/j.envint.2020.105924

  21. Srivastava S, Agrawal SB, Mondal MK (2016) Characterization, isotherm and kinetic study of phaseolus vulgaris husk as an innovative adsorbent for Cr(VI) removal. Korean J Chem Eng 33:567–575. https://doi.org/10.1007/s11814-015-0165-0

    Article  CAS  Google Scholar 

  22. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes (Basel) 10. https://doi.org/10.3390/membranes10050089

  23. Wan Ikhsan SN, Yusof N, Aziz F, Nurasyikin M (2017) A review of oilfield wastewater treatment using membrane filtration over conventional technology. Malaysian J Anal Sci 21:643–658. https://doi.org/10.17576/mjas-2017-2103-14

  24. Bhattacharjee C, Saxena VK, Dutta S (2017) Fruit juice processing using membrane technology: a review. Innov Food Sci Emerg Technol 43:136–153. https://doi.org/10.1016/j.ifset.2017.08.002

  25. Chao G, Shuili Y, Yufei S et al (2018) A review of ultrafiltration and forward osmosis: application and modification. IOP Conf Ser Earth Environ Sci 128:12150. https://doi.org/10.1088/1755-1315/128/1/012150

  26. Salahi A, Mohammadi T, Mosayebi Behbahani R, Hemmati M (2015) Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization, ANFIS modeling, and performance. J Environ Chem Eng 3:170–178. https://doi.org/10.1016/j.jece.2014.10.021

  27. Hailemariam RH, Woo YC, Damtie MM et al (2020) Reverse osmosis membrane fabrication and modification technologies and future trends: a review. Adv Colloid Interface Sci 276:102100. https://doi.org/10.1016/j.cis.2019.102100

  28. Umar M, Roddick F, Fan L (2015) Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview. Crit Rev Environ Sci Technol 45:193–248. https://doi.org/10.1080/10643389.2013.852378

    Article  CAS  Google Scholar 

  29. Bunani S, Yörükoğlu E, Yüksel Ü et al (2015) Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination 364:68–74. https://doi.org/10.1016/j.desal.2014.07.030

  30. Mulyanti R, Susanto H (2018) Wastewater treatment by nanofiltration membranes. IOP Conf Ser Earth Environ Sci 142:12017. https://doi.org/10.1088/1755-1315/142/1/012017

    Article  Google Scholar 

  31. Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9:3077–3092. https://doi.org/10.1016/j.asej.2018.08.001

  32. Garcia-Ivars J, Martella L, Massella M et al (2017) Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res 125:360–373. https://doi.org/10.1016/j.watres.2017.08.070

  33. Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

  34. Afroze S, Sen TK (2018) A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut 229:225. https://doi.org/10.1007/s11270-018-3869-z

    Article  CAS  Google Scholar 

  35. Samanta AK, Basu G, Mishra L (2018) Role of major constituents of coconut fibres on absorption of ionic dyes. Ind Crops Prod 117:20–27. https://doi.org/10.1016/j.indcrop.2018.02.080

  36. Zhang T, Kong L, Dai Y et al (2017) Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem Eng J 309:7–14. https://doi.org/10.1016/j.cej.2016.08.085

  37. Son E-B, Poo K-M, Chang J-S, Chae K-J (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168. https://doi.org/10.1016/j.scitotenv.2017.09.171

  38. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389. https://doi.org/10.1021/acs.iecr.5b04703

    Article  CAS  Google Scholar 

  39. Zhang H, Yang L, Zang X et al (2019) Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation. Sci Total Environ 688:811–817. https://doi.org/10.1016/j.scitotenv.2019.06.321

  40. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ (2017) Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J Environ Manage 191:189–197. https://doi.org/10.1016/j.jenvman.2017.01.015

  41. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Memb Sci 555:429–454. https://doi.org/10.1016/j.memsci.2018.03.051

  42. Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange—a review. Chemosphere 192:90–104. https://doi.org/10.1016/j.chemosphere.2017.10.101

  43. Sharma G, Kumar A, Naushad M et al (2016) Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior. J Ind Eng Chem 33:201–208. https://doi.org/10.1016/j.jiec.2015.10.011

    Article  CAS  Google Scholar 

  44. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resour Technol 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

  45. Huang H, Liu J, Zhang P et al (2017) Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem Eng J 307:696–706. https://doi.org/10.1016/j.cej.2016.08.134

  46. Krishnan S, Rawindran H, Sinnathambi CM, Lim JW (2017) Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conf Ser Mater Sci Eng 206:12089. https://doi.org/10.1088/1757-899x/206/1/012089

    Article  CAS  Google Scholar 

  47. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Reports 1:167–176. https://doi.org/10.1007/s40726-015-0015-z

    Article  CAS  Google Scholar 

  48. Guo W-Q, Yin R-L, Zhou X-J et al (2015) Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Ultrason Sonochem 22:182–187. https://doi.org/10.1016/j.ultsonch.2014.07.008

  49. Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A (2018) Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 17:1573–1598. https://doi.org/10.1039/C8PP00249E

    Article  CAS  PubMed  Google Scholar 

  50. Stange C, Sidhu JPS, Toze S, Tiehm A (2019) Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. Int J Hyg Environ Health 222:541–548. https://doi.org/10.1016/j.ijheh.2019.02.002

  51. Zhang M, Dong H, Zhao L et al (2019) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180

  52. Tagg A, Harrison J, Ju-Nam Y et al (2017) Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem Commun 53:372–375. https://doi.org/10.1039/C6CC08798A

    Article  CAS  Google Scholar 

  53. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71. https://doi.org/10.1016/j.coelec.2018.07.010

  54. Jiang N, Zhao Q, Xue Y et al (2018) Removal of dinitrotoluene sulfonate from explosive wastewater by electrochemical method using Ti/IrO2 as electrode. J Clean Prod 188:732–740. https://doi.org/10.1016/j.jclepro.2018.04.030

  55. Dong S, Feng J, Fan M et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630. https://doi.org/10.1039/C4RA13734E

    Article  CAS  Google Scholar 

  56. Baladi M, Soofivand F, Valian M, Salavati-Niasari M (2019) Sonochemical-assisted synthesis of pure Dy2ZnMnO6 nanoparticles as a novel double perovskite and study of photocatalytic performance for wastewater treatment. Ultrason Sonochem 57:172–184. https://doi.org/10.1016/j.ultsonch.2019.05.022

  57. Covei M, Perniu D, Bogatu C, Duta A (2019) CZTS-TiO2 thin film heterostructures for advanced photocatalytic wastewater treatment. Catal Today 321–322:172–177. https://doi.org/10.1016/j.cattod.2017.12.003

  58. Ali I, Han G-B, Kim J-O (2019) Reusability and photocatalytic activity of bismuth-TiO2 nanocomposites for industrial wastewater treatment. Environ Res 170:222–229. https://doi.org/10.1016/j.envres.2018.12.038

  59. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Timková I, Sedláková-Kaduková J, Pristaš P (2018) Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations 5. https://doi.org/10.3390/separations5040054

  61. Hülsen T, Barry EM, Lu Y et al (2016) Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res 100:486–495. https://doi.org/10.1016/j.watres.2016.04.061

  62. Sharma M, Behl K, Nigam S, Joshi M (2018) TiO2-GO nanocomposite for photocatalysis and environmental applications: a green synthesis approach. Vacuum 156:434–439. https://doi.org/10.1016/j.vacuum.2018.08.009

    Article  CAS  Google Scholar 

  63. Yu Z, Chen X-Q, Kang X et al (2018) Noninvasively modifying band structures of wide-bandgap metal oxides to boost photocatalytic activity. Adv Mater 30:1706259. https://doi.org/10.1002/adma.201706259

  64. Liu G, Wang L, Yang HG et al (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20:831–843. https://doi.org/10.1039/B909930A

    Article  Google Scholar 

  65. Benjwal P, De B, Kar KK (2018) 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity. Appl Surf Sci 427:262–272. https://doi.org/10.1016/j.apsusc.2017.08.226

  66. Venkataswamy P, Jampaiah D, Kandjani AE et al (2018) Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: effect of metal doping on catalytic activity. Res Chem Intermed 44:2523–2543. https://doi.org/10.1007/s11164-017-3244-5

    Article  CAS  Google Scholar 

  67. Mittal A, Mari B, Sharma S et al (2019) Non-metal modified TiO2: a step towards visible light photocatalysis. J Mater Sci Mater Electron 30:3186–3207. https://doi.org/10.1007/s10854-018-00651-9

    Article  CAS  Google Scholar 

  68. Shayegan Z, Lee C-S, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem Eng J 334:2408–2439. https://doi.org/10.1016/j.cej.2017.09.153

  69. Kumari V, Mittal A, Jindal J et al (2019) S-, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front Mater Sci 13:1–22. https://doi.org/10.1007/s11706-019-0453-4

    Article  Google Scholar 

  70. Wang W, Tadé MO, Shao Z (2018) Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog Mater Sci 92:33–63. https://doi.org/10.1016/j.pmatsci.2017.09.002

  71. He R, Xu D, Cheng B et al (2018) Review on nanoscale Bi-based photocatalysts. Nanoscale Horizons 3:464–504. https://doi.org/10.1039/C8NH00062J

    Article  CAS  PubMed  Google Scholar 

  72. Su Q, Li Y, Hu R et al (2020) Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv Sustain Syst 4:2000130. https://doi.org/10.1002/adsu.202000130

  73. Low J, Yu J, Jaroniec M et al (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

  74. Yaw CS, Ruan Q, Tang J et al (2019) A Type II n-n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: fabrication, characterisation and experimental validation. Chem Eng J 364:177–185. https://doi.org/10.1016/j.cej.2019.01.179

  75. Mosleh S, Dashtian K, Ghaedi M, Amiri M (2019) A Bi2WO6/Ag2S/ZnS: Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity towards the degradation of multiple dye pollutants. RSC Adv 9:30100–30111. https://doi.org/10.1039/c9ra05372g

    Article  CAS  Google Scholar 

  76. Meng S, Zhang J, Chen S et al (2019) Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Appl Surf Sci 476:982–992. https://doi.org/10.1016/j.apsusc.2019.01.246

  77. Li X, Shen R, Ma S et al (2018) Graphene-based heterojunction photocatalysts. Appl Surf Sci 430:53–107. https://doi.org/10.1016/j.apsusc.2017.08.194

  78. Ashouri R, Ghasemipoor P, Rasekh B et al (2019) The effect of ZnO-based carbonaceous materials for degradation of benzoic pollutants: a review. Int J Environ Sci Technol 16:1729–1740. https://doi.org/10.1007/s13762-018-2056-5

    Article  CAS  Google Scholar 

  79. Raj AM, Balachandran M (2020) Coal-based fluorescent zero-dimensional carbon nanomaterials: a short review. Energy Fuels 34:13291–13306. https://doi.org/10.1021/acs.energyfuels.0c02619

    Article  CAS  Google Scholar 

  80. Samadi M, Zirak M, Naseri A et al (2019) Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Res Chem Intermed 45:2197–2254. https://doi.org/10.1007/s11164-018-03729-5

    Article  CAS  Google Scholar 

  81. Zhao Y, Zhang S, Shi R et al (2020) Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances. Mater Today 34:78–91. https://doi.org/10.1016/j.mattod.2019.10.022

  82. Jiang W, Zhu Y, Zhu G et al (2017) Three-dimensional photocatalysts with a network structure. J Mater Chem A 5:5661–5679. https://doi.org/10.1039/C7TA00398F

    Article  CAS  Google Scholar 

  83. Hernández-Ramírez A, Medina-Ramírez I (2015) Photocatalytic semiconductors: synthesis, characterization, and environmental applications

    Google Scholar 

  84. Varshney G, Kanel SR, Kempisty DM et al (2016) Nanoscale TiO2 films and their application in remediation of organic pollutants. Coord Chem Rev 306:43–64. https://doi.org/10.1016/j.ccr.2015.06.011

    Article  CAS  Google Scholar 

  85. Ge J, Zhang Y, Heo YJ, Park SJ (2019) Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review

    Google Scholar 

  86. Tseng TK, Lin YS, Chen YJ, Chu H (2010) A review of photocatalysts prepared by sol-gel method for VOCs removal. Int J Mol Sci 11:2336–2361. https://doi.org/10.3390/ijms11062336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Puma G, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157:209–219. https://doi.org/10.1016/j.jhazmat.2008.01.040

  88. Yang G, Park SJ (2019) Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials (Basel) 12. https://doi.org/10.3390/ma12071177

  89. Rahemi Ardekani S, Sabour Rouh Aghdam A, Nazari M et al (2019) A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter. J Anal Appl Pyrolysis 141:104631. https://doi.org/10.1016/j.jaap.2019.104631

  90. Bogovic J, Rudolf R, Friedrich B (2016) The controlled single-step synthesis of Ag/TiO2 and Au/TiO2 by ultrasonic spray pyrolysis (USP). JOM 68:330–335. https://doi.org/10.1007/s11837-015-1417-5

    Article  CAS  Google Scholar 

  91. Nagajyothi PC, Prabhakar Vattikuti SV, Devarayapalli KC et al (2020) Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit Rev Environ Sci Technol 50:2617–2723. https://doi.org/10.1080/10643389.2019.1705103

    Article  CAS  Google Scholar 

  92. Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Technol 3:516–527. https://doi.org/10.1016/j.reffit.2017.08.002

  93. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017.03.002

  94. Basnet P, Inakhunbi Chanu T, Samanta D, Chatterjee S (2018) A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J Photochem Photobiol B Biol 183:201–221. https://doi.org/10.1016/j.jphotobiol.2018.04.036

  95. Ahmed S, Annu, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011

  96. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10:57. https://doi.org/10.1186/s40104-019-0368-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Directors of Amity Institute of Biotechnology, Amity Institute of Nanotechnology, Amity University Uttar Pradesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Nigam, S., Joshi, M. (2022). Design and Synthesis of Nanostructured Photocatalysts for Water Remediation. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_3

Download citation

Publish with us

Policies and ethics