Skip to main content

Gabor Layers Enhance Network Robustness

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

We revisit the benefits of merging classical vision concepts with deep learning models. In particular, we explore the effect of replacing the first layers of various deep architectures with Gabor layers (i.e. convolutional layers with filters that are based on learnable Gabor parameters) on robustness against adversarial attacks. We observe that architectures with Gabor layers gain a consistent boost in robustness over regular models and maintain high generalizing test performance. We then exploit the analytical expression of Gabor filters to derive a compact expression for a Lipschitz constant of such filters, and harness this theoretical result to develop a regularizer we use during training to further enhance network robustness. We conduct extensive experiments with various architectures (LeNet, AlexNet, VGG16, and WideResNet) on several datasets (MNIST, SVHN, CIFAR10 and CIFAR100) and demonstrate large empirical robustness gains. Furthermore, we experimentally show how our regularizer provides consistent robustness improvements.

J. C. Perez, M. Alfarra, G. Jeanneret denotes equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code at https://github.com/BCV-Uniandes/Gabor_Layers_for_Robustness.

References

  1. Alekseev, A., Bobe, A.: Gabornet: gabor filters with learnable parameters in deep convolutional neural network. In: International Conference on Engineering and Telecommunication (EnT) (2019)

    Google Scholar 

  2. Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., Welling, M.: The deep weight prior. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  3. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  4. Bibi, A., Ghanem, B., Koltun, V., Ranftl, R.: Deep layers as stochastic solvers. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  5. Cao, Y., et al.: Adversarial sensor attack on lidar-based perception in autonomous driving. In: ACM SIGSAC Conference on Computer and Communications Security (2019)

    Google Scholar 

  6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (SP) (2017)

    Google Scholar 

  7. Chen, Y., Zhu, L., Ghamisi, P., Jia, X., Li, G., Tang, L.: Hyperspectral images classification with gabor filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett. 14, 2355–2359 (2017)

    Article  Google Scholar 

  8. Liu, C., Wechsler, H.: Independent component analysis of gabor features for face recognition. IEEE Trans. Neural Netw. 14, 919–928 (2003)

    Article  Google Scholar 

  9. Chernikova, A., Oprea, A., Nita-Rotaru, C., Kim, B.: Are self-driving cars secure? evasion attacks against deep neural networks for steering angle prediction. In: IEEE Security and Privacy Workshops (SPW) (2019)

    Google Scholar 

  10. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  11. Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., Usunier, N.: Parseval networks: improving robustness to adversarial examples. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  12. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2012)

    Article  Google Scholar 

  13. Gabor, D.: Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93, 429–441 (1946)

    Google Scholar 

  14. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2, 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Patter Recognition (CVPR) (2016)

    Google Scholar 

  17. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  18. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  Google Scholar 

  19. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  20. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems (NeurIPS) (2012)

    Google Scholar 

  22. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  24. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  25. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. (IJCV) 43, 29–44 (2001)

    Article  Google Scholar 

  26. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (ICCV). IEEE (1999)

    Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60, 91–110 (2004)

    Article  Google Scholar 

  28. Luan, S., Chen, C., Zhang, B., Han, J., Liu, J.: Gabor convolutional networks. IEEE Trans. Image Process. 27, 4357–4366 (2018)

    Article  MathSciNet  Google Scholar 

  29. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  30. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. In: PsycCRITIQUES (1982)

    Google Scholar 

  31. Montufar, G., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions of deep neural networks. In: Advances in Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  32. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  33. Namuduri, K.R., Mehrotra, R., Ranganathan, N.: Edge detection models based on Gabor filters. In: International Conference on Pattern Recognition. Conference C: Image, Speech and Signal Analysis (1992)

    Google Scholar 

  34. Novak, C.L., Shafer, S.A., et al.: Anatomy of a color histogram. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (1992)

    Google Scholar 

  35. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  36. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy (SP) (2016)

    Google Scholar 

  37. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  38. Poggi, M., Mattoccia, S.: A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning. In: 2016 IEEE Symposium on Computers and Communication (ISCC) (2016)

    Google Scholar 

  39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  40. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. In: International Journal of Computer Vision (IJCV) (2015)

    Google Scholar 

  41. Sarwar, S.S., Panda, P., Roy, K.: Gabor filter assisted energy efficient fast learning convolutional neural networks. CoRR (2017)

    Google Scholar 

  42. Sedghi, H., Gupta, V., Long, P.M.: The singular values of convolutional layers. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  43. Shafahi, A., et al.: Adversarial training for free! In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  45. Su, Y.M., Wang, J.F.: A novel stroke extraction method for Chinese characters using Gabor filters. Pattern Recogn. 36, 635–647 (2003)

    Article  Google Scholar 

  46. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-net for compressive sensing MRI. In: Neural Information Systems (NeurIPS) (2016)

    Google Scholar 

  47. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  48. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  49. Xu, K., et al.: Structured adversarial attack: towards general implementation and better interpretability. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  50. Yao, H., Chuyi, L., Dan, H., Weiyu, Y.: Gabor feature based convolutional neural network for object recognition in natural scene. In: International Conference on Information Science and Control Engineering (ICISCE) (2016)

    Google Scholar 

  51. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  52. Zhang, D., Zhang, T., Lu, Y., Zhu, Z., Dong, B.: You only propagate once: accelerating adversarial training via maximal principle. In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  53. Zhang, J., Ghanem, B.: Deep learning. In: IEEE Conference on Computer Vision and Patter Recognition (CVPR) (2017)

    Google Scholar 

  54. Zhang, R.: Making convolutional networks shift-invariant again. In: International Con-ference on Machine Learning (ICML) (2019)

    Google Scholar 

  55. Zhong, Z., Jin, L., Xie, Z.: High performance offline handwritten Chinese character recognition using Googlenet and directional feature maps. In: International Conference on Document Analysis and Recognition (ICDAR) (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2019-4033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Pérez .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 749 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, J.C. et al. (2020). Gabor Layers Enhance Network Robustness. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics