Skip to main content

IL-23 and the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1290))

Abstract

The tumor microenvironment (TME), which assists in the development, progression, and metastasis of malignant cells, is instrumental in virtually every step of tumor development. While a healthy TME can protect against malignancy, in an unhealthy state, it can result in aberrant cellular behavior and augment tumor progression. Cytokines are one component of the TME, therefore, understanding the composition of the cytokine milieu in the tumor microenvironment is critical to understand the biology of malignant transformation. One cytokine, interleukin (IL)-23, has received particular scrutiny in cancer research because of its ability to manipulate host immune responses, its role in modulating the cells in TME, and its capacity to directly affect a variety of premalignant and malignant tumors. IL-23 belongs to the IL-12 cytokine family, which is produced by activated dendritic cells (DC) and macrophages. IL-23 acts by binding to its receptor consisting of two distinct subunits, IL-12Rβ1 and IL-23R. This, in turn, leads to janus kinase (JAK) activation and signal transducer and activator of transcription (STAT) 3/4 phosphorylation. There have been contradictory reports of pro- and antitumor effects of IL-23, which likely depend on the genetic background, the type of tumor, the causative agent, and the critical balance of STAT3 signaling in both the tumor itself and the TME. Clinical trials of IL-12/23 inhibitors that are used to treat patients with psoriasis, have been scrutinized for reports of malignancy, the most common being nonmelanoma skin cancers (NMSCs). Continued investigation into the relationship of IL-23 and its downstream pathways holds promise in identifying novel targets for the management of cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang M, Zhao J, Zhang L, Wei F, Lian Y et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson J, Balkwill F (2002) The role of cytokines in the epithelial cancer microenvironment. Semin Cancer Biol 12(2):113–120. https://doi.org/10.1006/scbi.2001.0419

    Article  CAS  PubMed  Google Scholar 

  3. Croxford AL, Mair F, Becher B (2012) IL-23: one cytokine in control of autoimmunity. Eur J Immunol 42(9):2263–2273. https://doi.org/10.1002/eji.201242598

    Article  CAS  PubMed  Google Scholar 

  4. Vignali DA, Kuchroo VK (2012) IL-12 family cytokines: immunological playmakers. Nat Immunol 13(8):722–728. https://doi.org/10.1038/ni.2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engel MA, Neurath MF (2010) Anticancer properties of the IL-12 family—focus on colorectal cancer. Curr Med Chem 17(29):3303–3308. https://doi.org/10.2174/092986710793176366

    Article  CAS  PubMed  Google Scholar 

  6. Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K et al (2015) New insights into IL-12-mediated tumor suppression. Cell Death Differ 22(2):237–246. https://doi.org/10.1038/cdd.2014.134

    Article  CAS  PubMed  Google Scholar 

  7. Teng MW, Andrews DM, McLaughlin N, von Scheidt B, Ngiow SF et al (2010) IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proc Natl Acad Sci U S A 107(18):8328–8333. https://doi.org/10.1073/pnas.1003251107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jantschitsch C, Weichenthal M, Proksch E, Schwarz T, Schwarz A (2012) IL-12 and IL-23 affect photocarcinogenesis differently. J Invest Dermatol 132(5):1479–1486. https://doi.org/10.1038/jid.2011.469

    Article  CAS  PubMed  Google Scholar 

  9. Giuliani N, Airoldi I (2011) Novel insights into the role of interleukin-27 and interleukin-23 in human malignant and normal plasma cells. Clin Cancer Res 17(22):6963–6970. https://doi.org/10.1158/1078-0432.CCR-11-1724

    Article  CAS  PubMed  Google Scholar 

  10. Ljujic B, Radosavljevic G, Jovanovic I, Pavlovic S, Zdravkovic N et al (2010) Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma. Arch Med Res 41(3):182–189. https://doi.org/10.1016/j.arcmed.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  11. Sheng S, Zhang J, Ai J, Hao X, Luan R (2018) Aberrant expression of IL-23/IL-23R in patients with breast cancer and its clinical significance. Mol Med Rep 17(3):4639–4644. https://doi.org/10.3892/mmr.2018.8427

    Article  CAS  PubMed  Google Scholar 

  12. Langowski JL, Kastelein RA, Oft M (2007) Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 28(5):207–212

    Article  CAS  PubMed  Google Scholar 

  13. Birbrair A, Zhang T, Wang ZM et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T et al (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465. https://doi.org/10.1038/nature04808

    Article  CAS  PubMed  Google Scholar 

  15. Nasti TH, Cochran JB, Vachhani RV, McKay K, Tsuruta Y et al (2017) IL-23 inhibits melanoma development by augmenting DNA repair and modulating T cell subpopulations. J Immunol 198(2):950–961. https://doi.org/10.4049/jimmunol.1601455

    Article  CAS  PubMed  Google Scholar 

  16. Gangemi S, Minciullo P, Adamo B, Franchina T, Ricciardi GR et al (2012) Clinical significance of circulating interleukin-23 as a prognostic factor in breast cancer patients. J Cell Biochem 113(6):2122–2125. https://doi.org/10.1002/jcb.24083

    Article  CAS  PubMed  Google Scholar 

  17. Ishihara-Yusa S, Fujimura T, Lyu C, Sugawara M, Sakamoto K et al (2018) Breast cancer metastasis in the skin with hyperkeratotic pigmentation caused by melanocyte colonization. Case Rep Oncol 11(3):660–664. https://doi.org/10.1159/000493186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nie W, Yu T, Sang Y, Gao X (2017) Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment. Biochem Biophys Res Commun 482(4):1400–1406. https://doi.org/10.1016/j.bbrc.2016.12.048

    Article  CAS  PubMed  Google Scholar 

  19. Elessawi DF, Alkady MM, Ibrahim IM (2019) Diagnostic and prognostic value of serum IL-23 in colorectal cancer. Arab J Gastroenterol 20(2):65–68. https://doi.org/10.1016/j.ajg.2019.05.002

    Article  PubMed  Google Scholar 

  20. Cocco C, Canale S, Frasson C, Di Carlo E, Ognio E et al (2010) Interleukin-23 acts as antitumor agent on childhood B-acute lymphoblastic leukemia cells. Blood 116(19):3887–3898. https://doi.org/10.1182/blood-2009-10-248245

    Article  CAS  PubMed  Google Scholar 

  21. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949. https://doi.org/10.1073/pnas.0506654102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neurath MF (2019) IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev 45:1–8. https://doi.org/10.1016/j.cytogfr.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Punkenburg E, Vogler T, Buttner M, Amann K, Waldner M et al (2016) Batf-dependent Th17 cells critically regulate IL-23 driven colitis-associated colon cancer. Gut 65(7):1139–1150. https://doi.org/10.1136/gutjnl-2014-308227

    Article  CAS  PubMed  Google Scholar 

  24. Shan BE, Hao JS, Li QX, Tagawa M (2006) Antitumor activity and immune enhancement of murine interleukin-23 expressed in murine colon carcinoma cells. Cell Mol Immunol 3(1):47–52. https://www.ncbi.nlm.nih.gov/pubmed/16549049

    CAS  PubMed  Google Scholar 

  25. Lo CH, Lee SC, Wu PY, Pan WY, Su J et al (2003) Antitumor and antimetastatic activity of IL-23. J Immunol 171(2):600–607. https://doi.org/10.4049/jimmunol.171.2.600

    Article  CAS  PubMed  Google Scholar 

  26. Wang YQ, Ugai S, Shimozato O, Yu L, Kawamura K et al (2003) Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer 105(6):820–824. https://doi.org/10.1002/ijc.11160

    Article  CAS  PubMed  Google Scholar 

  27. Chen D, Li W, Liu S, Su Y, Han G et al (2015) Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/beta-catenin pathway. Sci Rep 5:8604. https://doi.org/10.1038/srep08604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu H, Cao W, Chen W, Pan S, Xiao Y et al (2012) Potentially functional polymorphisms in IL-23 receptor and risk of esophageal cancer in a Chinese population. Int J Cancer 130(5):1093–1097. https://doi.org/10.1002/ijc.26130

    Article  CAS  PubMed  Google Scholar 

  29. Langley RG, Papp K, Gottlieb AB, Krueger GG, Gordon KB et al (2013) Safety results from a pooled analysis of randomized, controlled phase II and III clinical trials and interim data from an open-label extension trial of the interleukin-12/23 monoclonal antibody, briakinumab, in moderate to severe psoriasis. J Eur Acad Dermatol Venereol 27(10):1252–1261. https://doi.org/10.1111/j.1468-3083.2012.04705.x

    Article  CAS  PubMed  Google Scholar 

  30. Pouplard C, Brenaut E, Horreau C, Barnetche T, Misery L et al (2013) Risk of cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies. J Eur Acad Dermatol Venereol 27(Suppl 3):36–46. https://doi.org/10.1111/jdv.12165

    Article  PubMed  Google Scholar 

  31. Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG et al (2017) Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med 376(16):1551–1560. https://doi.org/10.1056/NEJMoa1607017

    Article  CAS  PubMed  Google Scholar 

  32. Reich K, Papp KA, Blauvelt A, Tyring SK, Sinclair R et al (2017) Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet 390(10091):276–288. https://doi.org/10.1016/S0140-6736(17)31279-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Elmets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subhadarshani, S., Yusuf, N., Elmets, C.A. (2021). IL-23 and the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1290. Springer, Cham. https://doi.org/10.1007/978-3-030-55617-4_6

Download citation

Publish with us

Policies and ethics