Skip to main content

A Dynamic Deep Neural Network for Multimodal Clinical Data Analysis

  • Chapter
  • First Online:
Explainable AI in Healthcare and Medicine

Part of the book series: Studies in Computational Intelligence ((SCI,volume 914))

Abstract

Clinical data from electronic medical records, registries or trials provide a large source of information to apply machine learning methods in order to foster precision medicine, e.g. by finding new disease phenotypes or performing individual disease prediction. However, to take full advantage of deep learning methods on clinical data, architectures are necessary that (1) are robust with respect to missing and wrong values, and (2) can deal with highly variable-sized lists and long-term dependencies of individual diagnosis, procedures, measurements and medication prescriptions. In this work, we elaborate limitations of fully-connected neural networks and classical machine learning methods in this context and propose AdaptiveNet, a novel recurrent neural network architecture, which can deal with multiple lists of different events, alleviating the aforementioned limitations. We employ the architecture to the problem of disease progression prediction in rheumatoid arthritis using the Swiss Clinical Quality Management registry, which contains over 10.000 patients and more than 65.000 patient visits. Our proposed approach leads to more compact representations and outperforms the classical baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As architecture we understand the full specification of interactions between different network modules, in- and outputs. In the following, we denote classical fully-connected neural networks without any extensions as FCN.

References

  1. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyping via time-aware LSTM networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 65–74. ACM, New York (2017). https://doi.org/10.1145/3097983.3097997

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  3. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8, 1–12 (2016). https://doi.org/10.1038/s41598-018-24271-9

    Article  Google Scholar 

  4. Choi, E., Xu, Z., Li, Y., Dusenberry, M.W., Flores, G., Xue, Y., Dai, A.M.: Graph convolutional transformer: learning the graphical structure of electronic health records. CoRR abs/1906.04716 (2019). arXiv:1906.04716

  5. Hoang, K.H., Ho, T.B.: Learning and recommending treatments using electronic medical records. Knowl.-Based Syst. 181, 104788 (2019). https://doi.org/10.1016/j.knosys.2019.05.031. http://www.sciencedirect.com/science/article/pii/S0950705119302436

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  7. Hügle, M., Kalweit, G., Mirchevska, B., Werling, M., Boedecker, J.: Dynamic input for deep reinforcement learning in autonomous driving. CoRR abs/1907.10994 (2019). arXiv:1907.01099

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980

  9. Komorowski, M., Celi, L., Badawi, O., Gordon, A., Faisal, A.: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018). https://doi.org/10.1038/s41591-018-0213-5

    Article  Google Scholar 

  10. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotech. J. 13, 8–17 (2015). https://doi.org/10.1016/j.csbj.2014.11.005. http://www.sciencedirect.com/science/article/pii/S2001037014000464

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  12. Lee, G., Nho, K., Kang, B., Sohn, K.A., Kim, D.: Predicting alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9, 1952 (2019). https://doi.org/10.1038/s41598-018-37769-z

    Article  Google Scholar 

  13. Li, Y., Rao, S., Solares, J.R.A., Hassaïne, A., Canoy, D., Zhu, Y., Rahimi, K., Khorshidi, G.S.: BEHRT: transformer for electronic health records. CoRR abs/1907.09538 (2019). arxiv:1907.09538

  14. Lin, C., Karlson, E.W., Canhao, H., Miller, T.A., Dligach, D., Chen, P.J., Perez, R.N.G., Shen, Y., Weinblatt, M.E., Shadick, N.A., Plenge, R.M., Savova, G.K.: Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PLOS ONE 8(8), 1–10 (2013). https://doi.org/10.1371/journal.pone.0069932

    Article  Google Scholar 

  15. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.C.: Learning to diagnose with LSTM recurrent neural networks. CoRR arxiv:1511.03677 (2015)

  16. Liu, L., Li, H., Hu, Z., Shi, H., Wang, Z., Tang, J., Zhang, M.: Learning hierarchical representations of electronic health records for clinical outcome prediction. CoRR abs/1903.08652 (2019). arxiv:1903.08652

  17. Liu, L., Shen, J., Zhang, M., Wang, Z., Tang, J.: Learning the joint representation of heterogeneous temporal events for clinical endpoint prediction. CoRR abs/1803.04837 (2018). arxiv:1803.04837

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). http://www.jmlr.org/papers/v9/vandermaaten08a.html

  19. Maragatham, G., Devi, S.: LSTM model for prediction of heart failure in big data. J. Med. Syst. 43(5), 1–13 (2019). https://doi.org/10.1007/s10916-019-1243-3

    Article  Google Scholar 

  20. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 1–10 (2016)

    Article  Google Scholar 

  21. Nancy, J.Y., Khanna, N.H., Arputharaj, K.: Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework. Comput. Stat. Data Anal. 112(C), 63–79 (2017). https://doi.org/10.1016/j.csda.2017.02.012

  22. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional net for medical records (2016)

    Google Scholar 

  23. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inform. 69, 218–229 (2017). https://doi.org/10.1016/j.jbi.2017.04.001. http://www.sciencedirect.com/science/article/pii/S1532046417300710

  24. Rajkomar, A., Oren, E., Chen, K., Dai, A., Hajaj, N., Liu, P., Liu, X., Sun, M., Sundberg, P., Yee, H., Zhang, K., Duggan, G., Flores, G., Hardt, M., Irvine, J., Le, Q., Litsch, K., Marcus, J., Mossin, A., Dean, J.: Scalable and accurate deep learning for electronic health records. NPJ Digit. Med. 1, 18 (2018). https://doi.org/10.1038/s41746-018-0029-1

    Article  Google Scholar 

  25. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  26. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol. Methods 7(2), 147–177 (2002)

    Article  Google Scholar 

  27. Shickel, B., Tighe, P., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances on deep learning techniques for electronic health record (EHR) analysis. CoRR abs/1706.03446 (2017). arxiv:1706.03446

  28. Shiezadeh, Z., Sajedi, H., Aflakie, E.: Diagnosis of rheumatoid arthritis using an ensemble learning approach, pp. 139–148 (2015). https://doi.org/10.5121/csit.2015.51512

  29. Uitz, E., Fransen, J., Langenegger, T., Stucki, P.D.M.G.: Clinical quality management in rheumatoid arthritis: putting theory into practice. Rheumatology 39, 542–549 (2000). https://doi.org/10.1093/rheumatology/39.5.542. swiss clinical quality management in rheumatoid arthritis

    Article  Google Scholar 

  30. Vodencarevic, A., Goes, M., Medina, O., de Groot, M., Haitjema, S., Solinge, W., Hoefer, I., Peelen, L., Laar, J., Zimmermann-Rittereiser, M., Hamans, B., Welsing, P.: Predicting flare probability in rheumatoid arthritis using machine learning methods, pp. 187–192 (2018). https://doi.org/10.5220/0006930501870192

  31. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3391–3401. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6931-deep-sets.pdf

  32. Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Sun, M.: Graph neural networks: a review of methods and applications. CoRR abs/1812.08434 (2018). arxiv:1812.08434

Download references

Acknowledgements

A list of rheumatology offices and hospitals that are contributing to the SCQM registries can be found on www.scqm.ch/institutions. The SCQM is financially supported by pharmaceutical industries and donors. A list of financial supporters can be found on www.scqm.ch/sponsor. We gratefully thank all patients and doctors for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hügle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hügle, M., Kalweit, G., Hügle, T., Boedecker, J. (2021). A Dynamic Deep Neural Network for Multimodal Clinical Data Analysis. In: Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L. (eds) Explainable AI in Healthcare and Medicine. Studies in Computational Intelligence, vol 914. Springer, Cham. https://doi.org/10.1007/978-3-030-53352-6_8

Download citation

Publish with us

Policies and ethics