Skip to main content

Dynamic Programming Approach to the Generalized Minimum Manhattan Network Problem

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12176))

Included in the following conference series:

Abstract

We study the generalized minimum Manhattan network (GMMN) problem: given a set \(P\) of pairs of points in the Euclidean plane \(\mathbb R^2\), we are required to find a minimum-length geometric network which consists of axis-aligned segments and contains a shortest path in the \(L_1\) metric (a so-called Manhattan path) for each pair in \(P\). This problem commonly generalizes several NP-hard network design problems that admit constant-factor approximation algorithms, such as the rectilinear Steiner arborescence (RSA) problem, and it is open whether so does the GMMN problem.

As a bottom-up exploration, Schnizler (2015) focused on the intersection graphs of the rectangles defined by the pairs in \(P\), and gave a polynomial-time dynamic programming algorithm for the GMMN problem whose input is restricted so that both the treewidth and the maximum degree of its intersection graph are bounded by constants. In this paper, as the first attempt to remove the degree bound, we provide a polynomial-time algorithm for the star case, and extend it to the general tree case based on an improved dynamic programming approach.

The full version  [9] of this paper is available at arXiv.

Y. Masumura has moved to Fast Retailing Co., Ltd., Tokyo 135-0063, Japan, and Y. Yamaguchi has moved to Kyushu University, Fukuoka 819-0395, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that p can be shared as corners of two different leaf pairs due to our definition of the intersection graph, and then leaving one bounding box means entering the other straightforwardly.

References

  1. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Programm. 97(1–2), 43–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chin, F.Y., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete Comput. Geom. 45(4), 701–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Das, A., Fleszar, K., Kobourov, S., Spoerhase, J., Veeramoni, S., Wolff, A.: Approximating the generalized minimum Manhattan network problem. Algorithmica 80(4), 1170–1190 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Funke, S., Seybold, M.P.: The generalized minimum Manhattan network problem (GMMN) - scale-diversity aware approximation and a primal-dual algorithm. In: Proceedings of Canadian Conference on Computational Geometry (CCCG), vol. 26 (2014)

    Google Scholar 

  6. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nordic J. Comput. 8(2), 219–232 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximation minimum Manhattan network. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 4–15. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_4

    Chapter  Google Scholar 

  8. Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Combinat. Optim. 4(3), 357–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Masumura, Y., Oki, T., Yamaguchi, Y.: Dynamic programming approach to the generalized minimum Manhattan network problem (2020). arXiv:2004.11166

  10. Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost-minimal trees in directed acyclic graphs. Zeitschrift für Oper. Res. 18(1), 59–67 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et Algorithmes. Ph.D. thesis, Université de la Méditerranée (2005)

    Google Scholar 

  12. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence problem. Algorithmica 7(1–6), 277–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schnizler, M.: The Generalized Minimum Manhattan Network Problem. Master’s thesis, University of Stuttgart (2015)

    Google Scholar 

  14. Seybold, M.P.: Algorithm Engineering in Geometric Network Planning and Data Mining. Ph.D. thesis, University of Stuttgart (2018)

    Google Scholar 

  15. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 35(3), 729–740 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zachariasen, M.: On the approximation of the rectilinear Steiner arborescence problem in the plane (2000)

    Google Scholar 

Download references

Acknowledgment

We are grateful to the anonymous reviewers for their careful reading and giving helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaro Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masumura, Y., Oki, T., Yamaguchi, Y. (2020). Dynamic Programming Approach to the Generalized Minimum Manhattan Network Problem. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2020. Lecture Notes in Computer Science(), vol 12176. Springer, Cham. https://doi.org/10.1007/978-3-030-53262-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53262-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53261-1

  • Online ISBN: 978-3-030-53262-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics