Skip to main content

Metal Nanoparticles for Hydrogen Isotope Exchange

  • Chapter
  • First Online:
Recent Advances in Nanoparticle Catalysis

Part of the book series: Molecular Catalysis ((MOLCAT,volume 1))

Abstract

Since the mid-1990s Hydrogen Isotope Exchange (HIE), consisting in the direct exchange of protium with its isotopes, has witnessed an enormous development (Atzrodt et al. in Angew Chem Int Ed, 57:3022–3047, 2018, [1], Atzrodt in Angew Chem Int Ed, 46:7744–7765, 2007, [2]). HIE reactions can nowadays be performed on a plethora of organic compounds by using both homogeneous and heterogeneous catalysis. Molecular catalysts remain the most commonly used due to their high reliability (Atzrodt et al. in Angew Chem Int Ed, 57:3022–3047, 2018, [1]). However, metallic nanoparticles have started attracting the attention of the scientific community (Asensio et al. in Chem Rev, 120:1042–1084, 2020, [3]) because of their interesting characteristics such as:

  1. 1.

    their reactivity in between homogeneous and heterogeneous catalysts,

  2. 2.

    the possibility to deeply influence their chemical properties by varying the stabilizing agent,

  3. 3.

    the non-negligible advantages of (generally) simple workup procedures.

In this chapter, we will give an overview of the recent advances in HIE. First, we will describe the main applications of protium isotopes. Then, we will briefly discuss the main advances in catalytic HIE reactions in both homogeneous and heterogeneous phase. Finally, we will summarize the examples of HIE catalyzed by metallic nanoparticles that have been described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzrodt J, Derdau V, Kerr WJ, Reid M (2018) C-H functionalisation for hydrogen isotope exchange. Angew Chem Int Ed 57:3022–3047

    Google Scholar 

  2. Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) The renaissance of H/D exchange. Angew Chem Int Ed Engl 46:7744–7765

    CAS  PubMed  Google Scholar 

  3. Asensio JM, Bouzouita D, van Leeuwen PWNM, Chaudret B (2020) σ-H–H, σ-C–H, and σ-Si–H bond activation catalyzed by metal nanoparticles. Chem Rev 120:1042–1084. https://doi.org/10.1021/acs.chemrev.1029b00368

    Article  PubMed  Google Scholar 

  4. Atzrodt J, Derdau V, Kerr WJ, Reid M (2018) Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew Chem Int Ed 57:1758–1784

    Google Scholar 

  5. Urey HC, Brickwedde FG, Murphy GM (1932) A hydrogen isotope of mass 2. Phys Rev 39:164–165

    CAS  Google Scholar 

  6. O’Leary D (2012) The deeds to deuterium. Nat Chem 4:236

    PubMed  Google Scholar 

  7. Oliphant ML, Harteck P (1934) Rutherford transmutation effects observed with heavy hydrogen. Nature 133:413

    CAS  Google Scholar 

  8. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Atkins PW, De Paula J (2014) Atkins’ physical chemistry

    Google Scholar 

  10. Wiberg KB (1955) The deuterium isotope effect. Chem Rev 55:713–743

    CAS  Google Scholar 

  11. Westheimer FH (1961) The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem Rev 61:265–273

    CAS  Google Scholar 

  12. Klinman JP (2010) A new model for the origin of kinetic hydrogen isotope effects. J Phys Org Chem 23:606–612

    CAS  Google Scholar 

  13. Nelson SD, Trager WF (2003) The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab Dispos 31:1481–1498

    CAS  PubMed  Google Scholar 

  14. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    CAS  PubMed  Google Scholar 

  15. Chowdhury G, Calcutt MW, Nagy LD, Guengerich FP (2012) Oxidation of methyl and ethyl nitrosamines by cytochrome P450 2E1 and 2B1. Biochemistry 51:9995–10007

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Howland RH (2015) Aspergillus, angiogenesis, and obesity: the story behind beloranib. J Psychosoc Nurs Ment Health Serv 53:13–16

    PubMed  Google Scholar 

  17. Katsnelson A (2013) Heavy drugs draw heavy interest from pharma backers. Nat Med 19:656

    CAS  PubMed  Google Scholar 

  18. Sanderson K (2009) Big interest in heavy drugs. Nature 458:269

    CAS  PubMed  Google Scholar 

  19. Yarnell A, Wang L (2009) Student affiliates answer presidential video challenge. Chem Eng News 87:48

    CAS  Google Scholar 

  20. Mullard A (2017) FDA approves first deuterated drug. Nat Rev Drug Discov 16:305

    PubMed  Google Scholar 

  21. Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19:401–407

    CAS  PubMed  Google Scholar 

  22. Hewavitharana AK (2011) Matrix matching in liquid chromatography-mass spectrometry with stable isotope labelled internal standards-Is it necessary? J Chromatogr A 1218:359–361

    CAS  PubMed  Google Scholar 

  23. Berg T, Karlsen M, Oeiestad AML, Johansen JE, Liu H, Strand DH (2014) Evaluation of 13C- and 2H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1344:83–90

    CAS  PubMed  Google Scholar 

  24. Metcalfe C, Tindale K, Li H, Rodayan A, Yargeau V (2010) Illicit drugs in Canadian municipal wastewater and estimates of community drug use. Environ Pollut 158:3179–3185

    CAS  PubMed  Google Scholar 

  25. Piper T, Emery C, Saugy M (2011) Recent developments in the use of isotope ratio mass spectrometry in sports drug testing. Anal Bioanal Chem 401:433–447

    CAS  PubMed  Google Scholar 

  26. Piper T, Thomas A, Thevis M, Saugy M (2012) Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference-population-based thresholds and proof-of-concept. Drug Test Anal 4:717–727

    CAS  PubMed  Google Scholar 

  27. Tran NH, Hu J, Ong SL (2013) Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution. Talanta 113:82–92

    CAS  PubMed  Google Scholar 

  28. Benijts T, Dams R, Lambert W, De Leenheer A (2004) Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A 1029:153–159

    CAS  PubMed  Google Scholar 

  29. Maguire JJ, Kuc RE, Davenport AP (2012) Radioligand binding assays and their analysis. Methods Mol Biol 897:31–77

    CAS  PubMed  Google Scholar 

  30. Harrell AW, Sychterz C, Ho MY, Weber A, Valko K, Negash K (2015) Interrogating the relationship between rat in vivo tissue distribution and drug property data for > 200 structurally unrelated molecules. Pharmacol Res Perspect 3. e00173/00171-e00173/00112

    Google Scholar 

  31. Voges R, Heys JR, Moenius T (2009) Preparation of compounds labeled with tritium and carbon-14

    Google Scholar 

  32. Uttamsingh V, Gallegos R, Liu JF, Harbeson SL, Bridson GW, Cheng C, Wells DS, Graham PB, Zelle R, Tung R (2015) Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine. J Pharmacol Exp Ther 354:43–54

    CAS  PubMed  Google Scholar 

  33. Crabtree R (1979) Iridium compounds in catalysis. Acc Chem Res 12:331–337

    CAS  Google Scholar 

  34. Heys R (1992) Investigation of iridium hydride complex [IrH2(Me2CO)2(PPh3)2]BF4 as a catalyst of hydrogen isotope exchange of substrates in solution. J Chem Soc Chem Commun, 680–681

    Google Scholar 

  35. Brown JA, Irvine S, Kennedy AR, Kerr WJ, Andersson S, Nilsson GN (2008) Highly active iridium(I) complexes for catalytic hydrogen isotope exchange. Chem Commun, 1115–1117

    Google Scholar 

  36. Atzrodt J, Derdau V, Kerr WJ, Reid M, Rojahn P, Weck R (2015) Expanded applicability of iridium(I) NHC/phosphine catalysts in hydrogen isotope exchange processes with pharmaceutically-relevant heterocycles. Tetrahedron 71:1924–1929

    CAS  Google Scholar 

  37. Valero M, Weck R, Guessregen S, Atzrodt J, Derdau V (2018) Highly selective directed iridium-catalyzed hydrogen isotope exchange reactions of aliphatic amides. Angew Chem Int Ed 57:8159–8163

    Google Scholar 

  38. Kerr WJ, Mudd RJ, Reid M, Atzrodt J, Derdau V (2018) Iridium-catalyzed Csp3-H activation for mild and selective hydrogen isotope exchange. ACS Catal 8:10895–10900

    CAS  Google Scholar 

  39. Cochrane AR, Irvine S, Kerr WJ, Reid M, Andersson S, Nilsson GN (2013) Application of neutral iridium(I) N-heterocyclic carbene complexes in ortho-directed hydrogen isotope exchange. J Labell Compd Radiopharm 56:451–454

    CAS  Google Scholar 

  40. Kerr WJ, Reid M, Tuttle T (2015) Iridium-catalyzed C-H activation and deuteration of primary sulfonamides: an experimental and computational study. ACS Catal 5:402–410

    CAS  Google Scholar 

  41. Kerr WJ, Reid M, Tuttle T (2017) Iridium-catalyzed formyl-selective deuteration of aldehydes. Angew Chem Int Ed 56:7808–7812

    Google Scholar 

  42. Prechtl MHG, Hoelscher M, Ben-David Y, Theyssen N, Loschen R, Milstein D, Leitner W (2007) H/D exchange at aromatic and heteroaromatic hydrocarbons using D2O as the deuterium source and ruthenium dihydrogen complexes as the catalyst. Angew Chem Int Ed 46:2269–2272

    Google Scholar 

  43. Hale LVA, Szymczak NK (2016) Stereoretentive deuteration of α-chiral amines with D2O. J Am Chem Soc 138:13489–13492

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Maegawa T, Fujiwara Y, Inagaki Y, Monguchi Y, Sajiki H (2008) A convenient and effective method for the regioselective deuteration of alcohols. Adv Synth Catal 350:2215–2218

    CAS  Google Scholar 

  45. Fujiwara Y, Iwata H, Sawama Y, Monguchi Y, Sajiki H (2010) Method for regio-, chemo- and stereoselective deuterium labeling of sugars based on ruthenium-catalyzed C-H bond activation. Chem Commun 46:4977–4979

    CAS  Google Scholar 

  46. Gao L, Perato S, Garcia-Argote S, Taglang C, Martinez-Prieto LM, Chollet C, Buisson D-A, Dauvois V, Lesot P, Chaudret B et al (2018) Ruthenium-catalyzed hydrogen isotope exchange of C(sp3)-H bonds directed by a sulfur atom. Chem Commun 54:2986–2989

    CAS  Google Scholar 

  47. Ma S, Villa G, Thuy-Boun PS, Homs A, Yu J-Q (2014) Palladium-catalyzed ortho-selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. Angew Chem Int Ed 53:734–737

    Google Scholar 

  48. Yang H, Dormer PG, Rivera NR, Hoover AJ (2018) Palladium(II)-mediated C-H tritiation of complex pharmaceuticals. Angew Chem Int Ed 57:1883–1887

    Google Scholar 

  49. Maegawa T, Akashi A, Esaki H, Aoki F, Sajiki H, Hirota K (2005) Efficient and selective deuteration of phenylalanine derivatives catalyzed by Pd/C. Synlett, 845–847

    Google Scholar 

  50. Sajiki H, Esaki H, Aoki F, Maegawa T, Hirota K (2005) Palladium-catalyzed base-selective H-D exchange reaction of nucleosides in deuterium oxide. Synlett, 1385–1388

    Google Scholar 

  51. Yu PR, Hesk D, Rivera N, Pelczer I, Chirik PJ (2016) Nature. Nature Publishing Group vol 529, pp 195–199

    Google Scholar 

  52. Palmer WN, Chirik PJ (2017) Cobalt-catalyzed stereoretentive hydrogen isotope exchange of C(sp3)-H bonds. ACS Catal 7:5674–5678

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang H, Zarate C, Palmer WN, Rivera N, Hesk D, Chirik PJ (2018) Site-selective nickel-catalyzed hydrogen isotope exchange in N-heterocycles and Its application to the tritiation of pharmaceuticals. ACS Catal 8:10210–10218

    CAS  Google Scholar 

  54. Zarate C, Yang H, Bezdek MJ, Hesk D, Chirik PJ (2019) Ni(I)-X complexes bearing a bulky α-diimine ligand: synthesis, structure, and superior catalytic performance in the hydrogen isotope exchange in pharmaceuticals. J Am Chem Soc 141:5034–5044

    CAS  PubMed  Google Scholar 

  55. Pla D, Gomez M (2016) Metal and metal oxide nanoparticles: a lever for C-H functionalization. ACS Catal 6:3537–3552

    CAS  Google Scholar 

  56. Ott LS, Cline ML, Deetlefs M, Seddon KR, Finke RG (2005) Nanoclusters in ionic liquids: evidence for N-Heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. J Am Chem Soc 127:5758–5759

    CAS  PubMed  Google Scholar 

  57. Sullivan JA, Flanagan KA, Hain H (2008) Selective H-D exchange catalyzed by aqueous phase and immobilized Pd nanoparticles. Catal Today 139:154–160

    CAS  Google Scholar 

  58. Guy KA, Shapley JR (2009) H-D exchange between N-heterocyclic compounds and D2O with a Pd/PVP colloid catalyst. Organometallics 28:4020–4027

    CAS  Google Scholar 

  59. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593

    CAS  PubMed  Google Scholar 

  60. Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach H-H, Chaudret B (2005) Direct NMR evidence for the presence of mobile surface hydrides on ruthenium nanoparticles. Chem Phys Chem 6:605–607

    CAS  PubMed  Google Scholar 

  61. Breso-Femenia E, Godard C, Claver C, Chaudret B, Castillón S (2015) Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination. Chem Commun 51:16342–16345

    CAS  Google Scholar 

  62. Pieters G, Taglang C, Bonnefille E, Gutmann T, Puente C, Berthet J-C, Dugave C, Chaudret B, Rousseau B (2014) Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles. Angew Chem Int Ed 53:230–234

    Google Scholar 

  63. Taglang C, Martinez-Prieto LM, del Rosal I, Maron L, Poteau R, Philippot K, Chaudret B, Perato S, Sam Lone A, Puente C et al. (2015) Enantiospecific C-H activation using ruthenium nanocatalysts. Angew Chem Int Ed 54:10474–10477

    Google Scholar 

  64. Martínez-Prieto LM, Baquero EA, Pieters G, Flores JC, de Jesús E, Nayral C, Delpech F, van Leeuwen PWNM, Lippens G, Chaudret B (2017) Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chem Commun 53:5850–5853

    Google Scholar 

  65. Bhatia S, Spahlinger G, Boukhumseen N, Boll Q, Li Z, Jackson JE (2016) Stereoretentive H/D exchange via an electroactivated heterogeneous catalyst at sp3 C-H sites bearing amines or alcohols. Eur J Org Chem 2016:4230–4235

    CAS  Google Scholar 

  66. Bouzouita D, Lippens G, Baquero EA, Fazzini PF, Pieters G, Coppel Y, Lecante P, Tricard S, Martinez-Prieto LM, Chaudret B (2019) Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution. Nanoscale 11:16544–16552

    CAS  PubMed  Google Scholar 

  67. Palazzolo A, Feuillastre S, Pfeifer V, Garcia-Argote S, Bouzouita D, Tricard S, Chollet C, Marcon E, Buisson D-A, Cholet S et al. (2019) Efficient access to deuterated and tritiated nucleobase pharmaceuticals and oligonucleotides using hydrogen-isotope exchange. Angew Chem Int Ed 58:4891–4895

    Google Scholar 

  68. Rothermel N, Bouzouita D, Roether T, de Rosal I, Tricard S, Poteau R, Gutmann T, Chaudret B, Limbach H-H, Buntkowsky G (2018) Surprising differences of alkane C-H activation catalyzed by ruthenium nanoparticles: complex surface-substrate recognition? Chem Cat Chem 10:4243–4247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Asensio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palazzolo, A., Asensio, J.M., Bouzouita, D., Pieters, G., Tricard, S., Chaudret, B. (2020). Metal Nanoparticles for Hydrogen Isotope Exchange. In: van Leeuwen, P., Claver, C. (eds) Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-45823-2_9

Download citation

Publish with us

Policies and ethics