Skip to main content

Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 1, Basic Concepts

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

This chapter provides a review of the basic ideas at the core of the Computational Singular Perturbation (CSP) method and the Tangential Stretching Rate (TSR) analysis. It includes a coherent summary of the theoretical foundations of these two methodologies while emphasizing their mutual interconnections. The main theoretical findings are presented in a systematic fashion. Their virtues and limitations will be discussed with reference to auto-ignition systems, laminar and turbulent premixed flames, and non-premixed jet flames. The material presented in the chapter constitutes an effective guideline for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the application of the criterion defined by Eq. (3.17), special care is required to manage the contribution of complex conjugate eigenvalues and eigenvectors.

References

  1. S.H. Lam, D.A. Goussis, Proc. Combust. Inst. 22, 931 (1988)

    Article  Google Scholar 

  2. S. Lam, D. Goussis, in Modeling and Simulation of Systems, ed. by P.B. et al. (Baltzer Scientific Publishing Co, 1989), pp. 303–306

    Google Scholar 

  3. S. Lam, D. Goussis, in Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer Lecture Notes, ed. by M. Smooke (Springer, Berlin, 1991), pp. 227–242

    Google Scholar 

  4. S.H. Lam, Combust. Sci. Technol. 89, 375 (1993)

    Article  Google Scholar 

  5. S.H. Lam, D.A. Goussis, Int. J. Chem. Kinet. 26, 461 (1994)

    Article  Google Scholar 

  6. M. Hadjinicolaou, D.A. Goussis, SIAM J. Sci. Comput. 20(3), 781 (1998)

    Article  Google Scholar 

  7. M. Valorani, D.A. Goussis, H.N. Najm, Using CSP to analyze computed reactive flows, in 8th SIAM International Conference on Numerical Combustion, Amelia Island, FL (2000)

    Google Scholar 

  8. M. Valorani, D. Goussis, H.N. Najm, in Ninth International Conference on Numerical Combustion, Sorrento, Italy (2002)

    Google Scholar 

  9. M. Valorani, H.N. Najm, D. Goussis, Combust. Flame 134(1–2), 35 (2003)

    Article  Google Scholar 

  10. D.A. Goussis, M. Valorani, F. Creta, H.N. Najm, in Computational Fluid and Solid Mechanics, vol. 2, ed. by K. Bathe (Elsevier Science, Cambridge, 2003), pp. 1951–1954

    Google Scholar 

  11. M. Valorani, D.A. Goussis, F. Creta, H.N. Najm, J. Comput. Phys. 209, 754 (2005)

    Article  MathSciNet  Google Scholar 

  12. M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, in Computational Fluid and Solid Mechanics, ed. by K. Bathe (Elsevier Science, Amsterdam, 2005), pp. 900–904

    Google Scholar 

  13. M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, Combust. Flame 146, 29 (2006)

    Article  Google Scholar 

  14. M. Valorani, F. Creta, F. Donato, H.N. Najm, D.A. Goussis, Proc. Combust. Inst. 31, 483 (2007)

    Article  Google Scholar 

  15. M. Valorani, F. Creta, F. Donato, H.N. Najm, D.A. Goussis, in ECCOMAS CFD 2006, Delft, Holland (2006)

    Google Scholar 

  16. T.F. Lu, Y.G. Ju, C.K. Law, Combust. Flame 126, 1445 (2001)

    Article  Google Scholar 

  17. T.F. Lu, C.K. Law, Combust. Flame 154, 761 (2008)

    Article  Google Scholar 

  18. A. Zagaris, H.G. Kaper, T.J. Kaper, in SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah (2003). Accessed 27–31 May 2003

    Google Scholar 

  19. A. Zagaris, H.G. Kaper, T.J. Kaper, Nonlinear Sci. 14, 59 (2004)

    Article  MathSciNet  Google Scholar 

  20. M. Salloum, A. Alexanderian, O. Le Maître, H.N. Najm, O. Knio, Comput. Methods Appl. Mech. Eng. 217–220, 121 (2012)

    Article  Google Scholar 

  21. J.C. Lee, H.N. Najm, S. Lefantzi, J. Ray, M. Frenklach, M. Valorani, D.A. Goussis, Combust. Theory Model. 11(1), 73 (2007)

    Article  Google Scholar 

  22. J. Prager, H.N. Najm, M. Valorani, D.A. Goussis, Proc. Combust. Inst. 32(1), 509 (2008)

    Article  Google Scholar 

  23. A. Adrover, F. Creta, M. Giona, M. Valorani, J. Comput. Phys. 225(2), 1442 (2007)

    Article  MathSciNet  Google Scholar 

  24. M. Valorani, S. Paolucci, E. Martelli, T. Grenga, P.P. Ciottoli, Combust. Flame 162(8), 2963 (2015)

    Article  Google Scholar 

  25. M. Valorani, P.P. Ciottoli, R.M. Galassi, Proc. Combust. Inst. 36(1), 1357 (2017)

    Article  Google Scholar 

  26. P. Pal, M. Valorani, P.G. Arias, H.G. Im, M.S. Wooldridge, P.P. Ciottoli, R. Malpica Galassi, Proc. Combust. Inst. 36(3), 3705 (2017)

    Google Scholar 

  27. D.M. Manias, E.A. Tingas, F.E.H. Pérez, R.M. Galassi, P.P. Ciottoli, M. Valorani, H.G. Im, Combust. Flame 200, 155 (2019)

    Article  Google Scholar 

  28. Z. Li, R.M. Galassi, P.P. Ciottoli, A. Parente, M. Valorani, Combust. Flame 208, 281 (2019)

    Article  Google Scholar 

  29. D.A. Goussis, Phys. D: Nonlinear Phenom. 248, 16 (2013)

    Article  MathSciNet  Google Scholar 

  30. M. Valorani, P. Ciottoli, R. Malpica Galassi, S. Paolucci, T. Grenga, E. Martelli, Flow, Turbul. Combust. 101(4), 1023 (2018)

    Google Scholar 

  31. M. Valorani, S. Paolucci, J. Comput. Phys. 228, 4665 (2009)

    Article  MathSciNet  Google Scholar 

  32. N. Fenichel, J. Differ. Equ. 31, 53 (1979)

    Article  MathSciNet  Google Scholar 

  33. D.A. Goussis, M. Valorani, F. Creta, H.N. Najm, Prog. Comput. Fluid Dyn. Int. J. 5(6), 316 (2005)

    Google Scholar 

  34. U. Maas, S. Pope, in Symposium (International) on Combustion, vol. 25,1 (1994), pp. 1349–1356

    Google Scholar 

  35. S. Lam, Combust. Sci. Technol. 179(4), 767 (2007)

    Article  Google Scholar 

  36. T. Grenga, S. Paolucci, M. Valorani, Combust. Flame 189C, 275 (2018)

    Article  Google Scholar 

  37. M. Valorani, S. Paolucci, P.P. Ciottoli, R.M. Galassi, Combust. Theory Model. 21(1), 137 (2017)

    Article  MathSciNet  Google Scholar 

  38. D.A. Goussis, G. Skevis, in Computational Fluid and Solid Mechanics, vol. 1, ed. by K. Bathe (Elsevier, Amsterdam, 2005), pp. 650–653

    Google Scholar 

  39. D.A. Goussis, H.N. Najm, Multiscale Model. Simul. 5(4), 1297 (2006)

    Article  MathSciNet  Google Scholar 

  40. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Fuel 183, 90 (2016)

    Article  Google Scholar 

  41. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Theory Model. 21(1), 93 (2017)

    Article  MathSciNet  Google Scholar 

  42. D.J. Diamantis, D.C. Kyritsis, D.A. Goussis, Proc. Combust. Inst. p. in press (2014)

    Google Scholar 

  43. D. Goussis, S. Lam, in Symposium (International) on Combustion, vol. 24 (1992), pp. 113–120

    Google Scholar 

  44. J. Prager, H.N. Najm, M. Valorani, D. Goussis, Combust. Flame 158(11), 2128 (2011)

    Article  Google Scholar 

  45. D.M. Manias, E.A. Tingas, C.E. Frouzakis, K. Boulouchos, D.A. Goussis, Combust. Flame 164, 111 (2016)

    Article  Google Scholar 

  46. D.J. Diamantis, E. Mastorakos, D.A. Goussis, Combust. Theory Model. 19(3), 382 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valorani, M. et al. (2020). Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 1, Basic Concepts. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_3

Download citation

Publish with us

Policies and ethics