Skip to main content

Fundamental Schemes to Determine Disjoint Paths for Multiple Failure Scenarios

  • Chapter
  • First Online:
Guide to Disaster-Resilient Communication Networks

Abstract

Disjoint path routing approaches can be used to cope with multiple failure scenarios. This can be achieved using a set of k (\(k> 2\)) link- (or node-) disjoint path pairs (in single-cost and multi-cost networks). Alternatively, if Shared Risk Link Groups (SRLGs) information is available, the calculation of an SRLG-disjoint path pair (or of a set of such paths) can protect a connection against the joint failure of the set of links in any single SRLG. Paths traversing disaster-prone regions should be disjoint, but in safe regions it may be acceptable for the paths to share links or even nodes for a quicker recovery. Auxiliary algorithms for obtaining the shortest path from a source to a destination are also presented in detail, followed by the illustrated description of Bhandari’s and Suurballe’s algorithms for obtaining a pair of paths of minimal total additive cost. These algorithms are instrumental for some of the presented schemes to determine disjoint paths for multiple failure scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms and applications. Prentice Hall

    Google Scholar 

  2. Bhandari R (1997) Optimal physical diversity algorithms and survivable networks. In: Second IEEE Symposium on Computers and Communications, 1997. Proceedings. IEEE, pp 433–441

    Google Scholar 

  3. Bhandari R (1999) Survivable networks, algorithms for diverse routing. Kluwer Academic Publishers, Norwell, MA, USA

    Google Scholar 

  4. Cheng Y, Li J, Sterbenz JPG (2013) Path geo-diversification: Design and analysis. In: 2013 5th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp 46–53

    Google Scholar 

  5. Cheng Y, Medhi D, Sterbenz JPG (2015) Geodiverse routing with path delay and skew requirement under area-based challenges. Networks 66(4):335–346

    Google Scholar 

  6. de Andrade RC (2016) New formulations for the elementary shortest-path problem visiting a given set of nodes. Eur J Oper Res 254(3):755–768

    Article  MathSciNet  MATH  Google Scholar 

  7. de Sousa A, Gomes T, Girão-Silva R, Martins L (2019) Minimization of the network availability upgrade cost with geodiverse routing for disaster resilience. Opt Switch Netw 31:127–143

    Article  Google Scholar 

  8. de Sousa A, Santos D, Monteiro P (2017) Determination of the minimum cost pair of \(D\)-geodiverse paths. In: The 2017 International Conference on Design of Reliable Communication Networks (DRCN 2017), Munich

    Google Scholar 

  9. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co.,

    Google Scholar 

  11. Gomes T, Craveirinha J (2007) Efficient calculation of the most reliable pair of link disjoint paths in telecommunication networks. Eur J Oper Res 182(3):1055–1064

    Article  MATH  Google Scholar 

  12. Gomes T, Simões C, Fernandes L (2013) Resilient routing in optical networks using SRLG-disjoint path pairs of min-sum cost. Telecommun Syst 52(2):737–749

    Google Scholar 

  13. Gomes T, Soares M, Craveirinha J, Melo P, Jorge L, Mirones V, Brízido A (2015) Two heuristics for calculating a shared risk link group disjoint set of paths of min-sum cost. J Netw Syst Manag 23(4):1067–1103

    Article  Google Scholar 

  14. Gomes T, Tapolcai J, Esposito C, Hutchison D, Kuipers F, Rak J, de Sousa A, Iossifides A, Travanca R, André J, Jorge L, Martins L, Ugalde PO, Pašić A, Pezaros D, Jouet S, Secci S, Tornatore M (2016) A survey of strategies for communication networks to protect against large-scale natural disasters. In: 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), pp 11–22

    Google Scholar 

  15. Hu JQ (2003) Diverse routing in optical mesh networks. IEEE Trans Commun 51(3):489–494

    Article  Google Scholar 

  16. Joksch H (1966) The shortest route problem with constraints. J Math Anal Appl 14:191–197

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorenz DH, Raz D (2001) A simple efficient approximation scheme for the restricted shortest path problem. Oper Res Lett 28(5):213–219

    Article  MathSciNet  MATH  Google Scholar 

  18. Martins L, Gomes T, Tipper D (2017) Efficient heuristics for determining node-disjoint path pairs visiting specified nodes. Networks 70(4):292–307

    Google Scholar 

  19. Moy C (1998) OSPF version 2. IETF RFC 2328

    Google Scholar 

  20. Oran D (1990) OSI IS-IS intra-domain routing protocol. IETF RFC 1142

    Google Scholar 

  21. Pollack M (1960) The maximum capacity through a network. Oper Res 8(5):733–736

    Article  MathSciNet  Google Scholar 

  22. Rak J (2015) Resilient routing in communication networks. Springer, Switzerland

    Google Scholar 

  23. Rak J (2010) \(k\)-Penalty: a novel approach to find \(k\)-disjoint paths with differentiated path costs. IEEE Commun Lett 14(4):354–356

    Google Scholar 

  24. Rak J (2012) Fast service recovery under shared protection in WDM networks. J Lightwave Technol 30(1):84–95

    Article  Google Scholar 

  25. Rostami MJ, Khorsandi S, Khodaparast AA (2007) CoSE: a SRLG-disjoint routing algorithm. In: Proceedings of the Fourth European Conference on Universal Multiservice Networks (ECUMN’07), Toulouse, France

    Google Scholar 

  26. Sen A, Shen BH, Bandyopadhyray S (2001) Survivability of lightwave networks—path lengths in WDM protection scheme. J High Speed Netw 10(4):303–315

    Google Scholar 

  27. Shen BH, Hao B, Sen A (2004) On multipath routing using widest pair of disjoint paths. In: 2004 Workshop on High Performance Switching and Routing, pp 134–140

    Google Scholar 

  28. Suurballe JW, Tarjan RE (1984) A quick method for finding shortest pairs of disjoint paths. Networks 14(2):325–336

    Article  MathSciNet  MATH  Google Scholar 

  29. Tapolcai J, Ho PH, Verchere D, Cinkler T, Haque A (2008) A new shared segment protection method for survivable networks with guaranteed recovery time. IEEE Trans Reliab 57(2):272–282

    Article  Google Scholar 

  30. Tapolcai J, Ronyai L, Vass B, Gyimothi L (2017) List of shared risk link groups representing regional failures with limited size. In: IEEE INFOCOM 2017—IEEE Conference on Computer Communications, pp 1–9

    Google Scholar 

  31. Todimala A, Ramamurthy B (2004) IMSH: an iterative heuristic for SRLG diverse routing in WDM mesh networks. In: 13th International Conference on Computer Communications and Networks, ICCCN’2004, pp 199–204

    Google Scholar 

  32. Xu D, Chen Y, Xiong Y, Qiao C, He X (2006) On the complexity of and algorithms for finding the shortest path with a disjoint counterpart. IEEE/ACM Trans Netw 14(1):147–158

    Google Scholar 

  33. Xu D, Xiong Y, Qiao C, Li G (2003) Trap avoidance and protection schemes in networks with shared risk link groups. J Lightwave Technol 21(11):2683–2693

    Google Scholar 

  34. Yallouz J, Orda A (2017) Tunable QoS-aware network survivability. IEEE/ACM Trans Netw 25(1):139–149

    Article  Google Scholar 

  35. Yallouz J, Rottenstreich O, Babarczi P, Mendelson A, Orda A (2018) Minimum-weight link-disjoint node—“somewhat disjoint” paths. IEEE/ACM Trans Netw 26(3):1110–1122

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by COST (European Cooperation in Science and Technology). This work is funded by ERDF Funds through the Centre’s Regional Operational Program and by National Funds through the FCT—Fundação para a Ciência e a Tecnologia, I.P. under the project CENTRO-01-0145-FEDER-029312. This work was also partially supported by FCT under projects UIDB/00308/2020 and UIDB/05757/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, T., Jorge, L., Girão-Silva, R., Yallouz, J., Babarczi, P., Rak, J. (2020). Fundamental Schemes to Determine Disjoint Paths for Multiple Failure Scenarios. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics