Skip to main content

Quantitative SPECT/CT—Technique and Clinical Applications

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

The continuous development of SPECT over the past 50 years has led to improved image quality and increased diagnostic confidence. The most influential developments include the realization of hybrid SPECT/CT devices, as well as the implementation of attenuation correction and iterative image reconstruction techniques. These developments have led to a preference for SPECT/CT devices over SPECT-only systems and to the widespread adoption of the former, strengthening the role of SPECT/CT as the workhorse of Nuclear Medicine imaging. New trends in the ongoing development of SPECT/CT are diverse. For example, whole-body SPECT/CT images, consisting of acquisitions from multiple consecutive bed positions in the manner of PET/CT, are increasingly performed. Additionally, in recent years, some interesting approaches in detector technology have found their way into commercial products. For example, some SPECT cameras dedicated to specific organs employ semiconductor detectors made of cadmium telluride or cadmium zinc telluride, which have been shown to increase the obtainable image quality by offering a higher sensitivity and energy resolution. However, the advent of quantitative SPECT/CT which, like PET, can quantify the amount of tracer in terms of Bq/mL or as a standardized uptake value could be regarded as most important development. It is a major innovation that will lead to increased diagnostic accuracy and confidence, especially in longitudinal studies and in the monitoring of treatment response. The current work comprises two main aspects. At first, physical and technical fundamentals of SPECT image formation are described and necessary prerequisites of quantitative SPECT/CT are reviewed. Additionally, the typically achievable quantitative accuracy based on reports from the literature is given. Second, an extensive list of studies reporting on clinical applications of quantitative SPECT/CT is provided and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaszczak RJ, Greer KL, Floyd CEJ, Harris CC, Coleman RE (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25(8):893–900

    CAS  PubMed  Google Scholar 

  2. Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X (1988) SPECT compton-scattering correction by analysis of energy spectra. J Nucl Med 29(2):195–202

    CAS  PubMed  Google Scholar 

  3. Frey EC, Tsui BMW (1994) Modeling the scatter response function in inhomogenous scattering media for SPECT. IEEE Trans Nucl Sci 41(4):1585–1593

    Google Scholar 

  4. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK (1994) Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 41(6):2793–2799

    Google Scholar 

  5. Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE et al (1996) Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 43(4):2263–2274

    Google Scholar 

  6. Römer W, Reichel N, Vija HA, Nickel I, Hornegger J, Bautz W et al (2006) Isotropic reconstruction of SPECT data using OSEM3D: correlation with CT. Acad Radiol. 13(4):496–502

    PubMed  Google Scholar 

  7. El Fakhri GN, Buvat I, Pélégrini M, Benali H, Almeida P, Bendriem B et al (1999) Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med Mol Imaging 26(5):437–446

    Google Scholar 

  8. Kessler RM, Ellis JRJ, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8(3):514–522

    CAS  PubMed  Google Scholar 

  9. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL (2000) Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 27(2):161–169

    CAS  PubMed  Google Scholar 

  10. Bockisch A, Freudenberg LS, Schmidt D, Kuwert T (2009) Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med 39(4):276–289

    PubMed  Google Scholar 

  11. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238(2):405–422

    Google Scholar 

  12. Germain P, Baruthio J, Roul G, Dumitresco B (eds) (2000) First-pass MRI compartmental analysis at the chronic stage of infarction: myocardial flow reserve parametric map. Comput Cardiol

    Google Scholar 

  13. Lewis DH, Bluestone JP, Savina M, Zoller WH, Meshberg EB, Minoshima S (2006) Imaging cerebral activity in recovery from chronic traumatic brain injury: a preliminary report. J Neuroimaging 16(3):272–277

    PubMed  Google Scholar 

  14. Sidoti C, Agrillo U (2006) Chronic cortical stimulation for amyotrophic lateral sclerosis: a report of four consecutive operated cases after a 2-year follow-up: technical case report. Neurosurgery 58(2):E384. https://doi.org/10.1227/01.NEU.0000195115.30783.3A

    Article  PubMed  Google Scholar 

  15. Gullberg GT et al (2010) Dynamic single photon emission computed tomography: basic principles and cardiac applications. Phys Med Biol 55(20):R111

    PubMed  PubMed Central  Google Scholar 

  16. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29(1):27–33

    CAS  Google Scholar 

  17. Anger HO (1964) Scintillation camera with multichannel collimators. J Nucl Med 5(7):515–531

    CAS  PubMed  Google Scholar 

  18. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine, 3rd edn. Elsevier, Philadelphia

    Google Scholar 

  19. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L (2010) A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 37(10):1887–1902

    PubMed  PubMed Central  Google Scholar 

  20. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 53(12):1897–1903

    Google Scholar 

  21. Slomka PJ, Berman DS, Germano G (2014) New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med 44(4):232–251

    PubMed  Google Scholar 

  22. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM (2003) High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50(3):315–320

    Google Scholar 

  23. Branderhorst W, Vastenhouw B, van der Have F, Blezer E, Bleeker W, Beekman F (2010) Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging 1–10

    Google Scholar 

  24. Nömayr A, Römer W, Strobel D, Bautz W, Kuwert T (2006) Anatomical accuracy of hybrid SPECT/spiral CT in the lower spine. Nucl Med Commun 27(6):521–528

    PubMed  Google Scholar 

  25. Han J, Köstler H, Bennewitz C, Kuwert T, Hornegger J (2008) Computer-aided evaluation of anatomical accuracy of image fusion between X-ray CT and SPECT. Comput Med Imaging Graph 32(5):388–395

    PubMed  Google Scholar 

  26. Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL (2006) Optimal ct breathing protocol for combined thoracic PET/CT. Am J Roentgenol 187(5):1357–1360

    Google Scholar 

  27. Chen J, Caputlu-Wilson S, Shi H, Galt J, Faber T, Garcia E (2006) Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol. 13(1):43–49

    PubMed  Google Scholar 

  28. Bruyant PP (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43(10):1343–1358

    Google Scholar 

  29. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2):113–122

    CAS  PubMed  Google Scholar 

  30. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8(2):306–316

    CAS  PubMed  Google Scholar 

  31. Arosio M, Pasquali C, Crivellaro C, De Ponti E, Morzenti S, Guerra L et al (2011) Performance of a SPECT collimator-detector response reconstruction algorithm: phantom studies and validation in inflammation clinical studies. Q J Nucl Med Mol Imaging. 55(6):671–679

    CAS  PubMed  Google Scholar 

  32. Aldridge MD, Waddington WW, Dickson JC, Prakash V, Ell PJ, Bomanji JB (2013) Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software. Nucl Med Commun 34(11):1116–1123

    PubMed  Google Scholar 

  33. Kalantari F, Rajabi H, Saghari M (2012) Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study. Nucl Med Commun 33(3):228–238

    PubMed  Google Scholar 

  34. Zoccarato O, Scabbio C, De Ponti E, Matheoud R, Leva L, Morzenti S, et al (2014) Comparative analysis of iterative reconstruction algorithms with resolution recovery for cardiac SPECT studies. A multi-center phantom study. J Nucl Cardiol 21(1):135–148

    Google Scholar 

  35. Druz RS, Phillips LM, Chugkowski M, Boutis L, Rutkin B, Katz S (2011) Wide-beam reconstruction half-time SPECT improves diagnostic certainty and preserves normalcy and accuracy: a quantitative perfusion analysis. J Nucl Cardiol. 18(1):52–61

    PubMed  Google Scholar 

  36. Venero CV, Heller GV, Bateman TM, McGhie AI, Ahlberg AW, Katten D et al (2009) A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol. 16(5):714–725

    PubMed  Google Scholar 

  37. Stansfield EC, Sheehy N, Zurakowski D, Vija AH, Fahey FH, Treves ST (2010) Pediatric 99mTc-MDP bone SPECT with ordered subset expectation maximization iterative reconstruction with isotropic 3D resolution recovery. Radiology 257(3):793–801

    PubMed  Google Scholar 

  38. Liu S, Farncombe TH, (eds) (2007) Collimator-detector response compensation in quantitative SPECT reconstruction. In: Nuclear science symposium conference record, NSS’07 Oct 26–Nov 3 2007 IEEE

    Google Scholar 

  39. Du Y, Tsui BM, Frey EC (2006) Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 51(5):1269–1282

    PubMed  Google Scholar 

  40. Se Young C, Fessler JA, Dewaraja YK (2013) Correction for collimator-detector response in SPECT using point spread function template. IEEE Trans Med Imaging 32(2):295–305

    Google Scholar 

  41. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R (2000) Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 41(8):1400–1408

    PubMed  Google Scholar 

  42. Hutton BF, Buvat I, Beekman FJ (2011) Review and current status of SPECT scatter correction. Phys Med Biol 56(14):R85–112

    PubMed  Google Scholar 

  43. King MA, Tsui BMW, Pan T-S (1995) Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2(6):513–24

    Google Scholar 

  44. Zaidi H, Koral KF (2004) Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31(5):761–782

    Google Scholar 

  45. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S (1991) A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 10(3):408–412

    CAS  PubMed  Google Scholar 

  46. King MA, DeVries DJ, Pan TS, Pretorius PH, Case JA (1997) An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 44(3):1140–1145

    Google Scholar 

  47. Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R (1995) Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 36(8):1476–1488

    CAS  PubMed  Google Scholar 

  48. Sohlberg A, Watabe H, Iida H (2008) Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol 53(14):N277–N285

    CAS  PubMed  Google Scholar 

  49. Beekman FJ, De Jong HWAM, van Geloven S (2002) Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Medical Imaging, 21(8):867–877

    Google Scholar 

  50. Frey EC, Tsui BMW (eds) (1996) A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. In: Nuclear science symposium, 1996 conference record, 2–9 Nov 1996. IEEE

    Google Scholar 

  51. Vicente EM, Lodge MA, Rowe SP, Wahl RL, Frey EC (2017) Simplifying volumes-of-interest (VOIs) definition in quantitative SPECT: beyond manual definition of 3D whole-organ VOIs. Med Phys 44(5):1707–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H (2010) Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging 37

    Google Scholar 

  53. Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr 3(3):299–308

    Google Scholar 

  54. Chen CH, Muzic RF Jr, Nelson AD, Adler LP (1998) A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. IEEE Trans Med Imaging 17(2):214–227

    CAS  PubMed  Google Scholar 

  55. Seo Y, Aparici CM, Cooperberg MR, Konety BR, Hawkins RA (2009) In Vivo Tumor Grading of Prostate Cancer Using Quantitative 111In-Capromab Pendetide SPECT/CT. J Nucl Med 51(1):31–36

    PubMed  PubMed Central  Google Scholar 

  56. Hutton BF, Lau YH (1998) Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43(6):1679

    CAS  PubMed  Google Scholar 

  57. Pretorius PH, King MA (2009) Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys 36(1):105–115

    PubMed  Google Scholar 

  58. Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH (2001) Absolute quantification of regional myocardial uptake of 99 mTc-Sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42(5):772–779

    PubMed  Google Scholar 

  59. Tang HR, Brown JK, Hasegawa BH (eds) (1996) Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. In: Nuclear science symposium, conference record, IEEE

    Google Scholar 

  60. Rousset O, Ma Y, Kamber M, Evans AC (1993) 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph 17(4–5):373–379

    CAS  PubMed  Google Scholar 

  61. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911

    CAS  PubMed  Google Scholar 

  62. Du Y, Tsui BMW, Frey EC (2005) Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 24(8):969–976

    PubMed  Google Scholar 

  63. Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I (2003) Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 44(7):1184–1193

    CAS  PubMed  Google Scholar 

  64. Performance measurements of gamma cameras (2007) NEMA NU 1-2007. National Electrical Manufacturers Association, Rosslyn, VA

    Google Scholar 

  65. Dewaraja Y, Ljungberg M, Koral K. Effects of dead time and pile up on quantitative SPECT for I-131 dosimetric studies. J Nucl Med Meet Abstr 49(MeetingAbstracts_1):47P-c-

    Google Scholar 

  66. Vija AH (2013) White paper: introduction to xSPECT technology: evolving multi-modal SPECT to become context-based and quantitative. Siemens Medical Solutions USA, Inc

    Google Scholar 

  67. Sanders JC, Kuwert T, Hornegger J, Ritt P (2015) Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 17(4):585–593

    CAS  PubMed  Google Scholar 

  68. Zimmerman BE, Grosev D, Buvat I, Coca Perez MA, Frey EC, Green A et al (2017) Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification: an IAEA phantom study. Z Med Phys 27(2):98–112

    PubMed  Google Scholar 

  69. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ (2011) Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 11:56–66

    PubMed  PubMed Central  Google Scholar 

  70. D’Arienzo M, Cazzato M, Cozzella ML, Cox M, D’Andrea M, Fazio A et al (2016) Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu. Appl Radiat Isot 112:156–164

    PubMed  Google Scholar 

  71. de Nijs R, Lagerburg V, Klausen TL, Holm S (2014) Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl Med Commun 35(5):522–533

    PubMed  PubMed Central  Google Scholar 

  72. Gils CAJv, Beijst C, Rooij Rv, Jong HWAMd (2016) Impact of reconstruction parameters on quantitative I-131 SPECT. Phys Med Biol 61(14):5166

    Google Scholar 

  73. Israel O, Iosilevsky G, Front D, Bettman L, Frenkel A, Ish-Shalom S et al (1990) SPECT quantitation of iodine-131 concentration in phantoms and human tumors. J Nucl Med 31(12):1945–1949

    CAS  PubMed  Google Scholar 

  74. Koral KF, Yendiki A, Dewaraja YK (2007) Recovery of total I-131 activity within focal volumes using SPECT and 3D OSEM. Phys Med Biol 52(3):777

    PubMed  Google Scholar 

  75. Marin G, Vanderlinden B, Karfis I, Guiot T, Wimana Z, Flamen P et al (2017) Accuracy and precision assessment for activity quantification in individualized dosimetry of 177Lu-DOTATATE therapy. EJNMMI Phys 4(1):7

    PubMed  PubMed Central  Google Scholar 

  76. Mezzenga E, D’Errico V, D’Arienzo M, Strigari L, Panagiota K, Matteucci F et al (2017) Quantitative accuracy of 177Lu SPECT imaging for molecular radiotherapy. PLoS ONE 12(8):e0182888

    PubMed  PubMed Central  Google Scholar 

  77. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A (2008) Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 53(17):4595

    CAS  PubMed  Google Scholar 

  78. Shcherbinin S, Piwowarska-Bilska H, Celler A, Birkenfeld B (2012) Quantitative SPECT/CT reconstruction for 177 Lu and 177 Lu/ 90 Y targeted radionuclide therapies. Phys Med Biol 57(18):5733

    CAS  PubMed  Google Scholar 

  79. Uribe CF, Esquinas PL, Tanguay J, Gonzalez M, Gaudin E, Beauregard JM et al (2017) Accuracy of 177Lu activity quantification in SPECT imaging: a phantom study. EJNMMI Phys. 4(1):2

    PubMed  PubMed Central  Google Scholar 

  80. Willowson K, Bailey DL, Bailey EA, Baldock C, Roach PJ (2010) In vivo validation of quantitative SPECT in the heart. Clin Physiol Funct Imaging 30(3):214–219

    PubMed  Google Scholar 

  81. Willowson K, Bailey DL, Baldock C (2008) Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 53(12):3099

    PubMed  Google Scholar 

  82. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T (2010) Quantitative accuracy of clinical 99 mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 51(6):921–928

    PubMed  Google Scholar 

  83. Chipiga L, Sydoff M, Zvonova I, Bernhardsson C (2016) Investigation of partial volume effect in different PET/CT systems: a comparison of results using the madeira phantom and the NEMA NU-2 2001 phantom. Radiat Prot Dosimetry 169(1–4):365–370

    CAS  PubMed  Google Scholar 

  84. Jonsson L, Stenvall A, Mattsson E, Larsson E, Sundlov A, Ohlsson T et al (2018) Quantitative analysis of phantom studies of (111)In and (68)Ga imaging of neuroendocrine tumours. EJNMMI Phys. 5(1):5

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maus J, Hofheinz F, Schramm G, Oehme L, Beuthien-Baumann B, Lukas M et al (2014) Evaluation of PET quantification accuracy in vivo. Comparison of measured FDG concentration in the bladder with urine samples. Nuklearmedizin 53(3):67–77

    Google Scholar 

  86. Maus J, Schramm G, Hofheinz F, Oehme L, Lougovski A, Petr J et al (2015) Evaluation of in vivo quantification accuracy of the Ingenuity-TF PET/MR. Med Phys 42(10):5773–5781

    PubMed  Google Scholar 

  87. Zhu Y, Geng C, Huang J, Liu J, Wu N, Xin J et al (2018) Measurement and evaluation of quantitative performance of PET/CT images before a multicenter clinical trial. Sci Rep 8(1):9035

    PubMed  PubMed Central  Google Scholar 

  88. Cachovan M, Vija A, Hornegger J, Kuwert T (2013) Quantification of 99 mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Research 3(1):45

    PubMed  PubMed Central  Google Scholar 

  89. Ayubcha C, Zirakchian Zadeh M, Stochkendahl MJ, Al-Zaghal A, Hartvigsen J, Rajapakse CS et al (2018) Quantitative evaluation of normal spinal osseous metabolism with 18F-NaF PET/CT. Nucl Med Commun 39(10):945–950

    PubMed  Google Scholar 

  90. Arvola S, Jambor I, Kuisma A, Kemppainen J, Kajander S, Seppanen M et al (2019) Comparison of standardized uptake values between (99 m)Tc-HDP SPECT/CT and (18)F-NaF PET/CT in bone metastases of breast and prostate cancer. EJNMMI research. 9(1):6

    PubMed  PubMed Central  Google Scholar 

  91. Umeda T, Koizumi M, Fukai S, Miyaji N, Motegi K, Nakazawa S et al (2018) Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients. Ann Nucl Med 32(2):105–113

    CAS  PubMed  Google Scholar 

  92. Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M (2017) Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. Eur J Hybrid Imaging 1(1):2

    PubMed  PubMed Central  Google Scholar 

  93. Bae S, Kang Y, Song YS, Lee WW (2019) Maximum standardized uptake value of foot SPECT/CT using Tc-99 m HDP in patients with accessory navicular bone as a predictor of surgical treatment. Medicine 98(2):e14022

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramsay SC, Lindsay K, Fong W, Patford S, Younger J, Atherton J (2018) Tc-HDP quantitative SPECT/CT in transthyretin cardiac amyloid and the development of a reference interval for myocardial uptake in the non-affected population. Eur J Hybrid Imaging 2(1):17

    PubMed  PubMed Central  Google Scholar 

  95. Suh MS, Lee WW, Kim YK, Yun PY, Kim SE (2016) Maximum Standardized Uptake Value of (99 m)Tc Hydroxymethylene Diphosphonate SPECT/CT for the Evaluation of Temporomandibular Joint Disorder. Radiology 280(3):890–896

    PubMed  Google Scholar 

  96. Kim J, Lee HH, Kang Y, Kim TK, Lee SW, So Y et al (2017) Maximum standardised uptake value of quantitative bone SPECT/CT in patients with medial compartment osteoarthritis of the knee. Clin Radiol 72(7):580–589

    CAS  Google Scholar 

  97. Barthassat E, Afifi F, Konala P, Rasch H, Hirschmann MT (2017) Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT)—a comparison of semi-quantitative versus 3D volumetric quantitative measurements. BMC Med Imaging 17(1):31

    PubMed  PubMed Central  Google Scholar 

  98. Beck M, Sanders JC, Ritt P, Reinfelder J, Kuwert T (2016) Longitudinal analysis of bone metabolism using SPECT/CT and (99m)Tc-diphosphono-propanedicarboxylic acid: comparison of visual and quantitative analysis. EJNMMI research 6(1):60

    PubMed  PubMed Central  Google Scholar 

  99. Harmon SA, Perk T, Lin C, Eickhoff J, Choyke PL, Dahut WL et al (2017) Quantitative assessment of early [(18)F]sodium fluoride positron emission tomography/computed tomography response to treatment in men with metastatic prostate cancer to bone. J Clin Oncol: Off J Am Soc Clin Oncology 35(24):2829–2837

    CAS  Google Scholar 

  100. Del Prete M, Buteau FA, Arsenault F, Saighi N, Bouchard LO, Beaulieu A et al (2019) Personalized (177)Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. Eur J Nucl Med Mol Imaging 46(3):728–742

    Google Scholar 

  101. Dittmann H, Kopp D, Kupferschlaeger J, Feil D, Groezinger G, Syha R et al (2018) A prospective study of quantitative SPECT/CT for evaluation of lung shunt fraction before SIRT of liver tumors. J Nucl Med: Off Publ, Soc Nucl Medicine 59(9):1366–1372

    CAS  Google Scholar 

  102. Garin E, Rolland Y, Pracht M, Le Sourd S, Laffont S, Mesbah H et al (2017) High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with (90) Y-loaded glass microsphere radioembolization. Liver Int: Off J Int Assoc Study Liver 37(1):101–110

    CAS  Google Scholar 

  103. Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A (2018) Hepatocellular Carcinoma Tumor Dose Response After (90)Y-radioembolization With Glass Microspheres Using (90)Y-SPECT/CT-Based Voxel Dosimetry. Int J Radiat Oncol Biol Phys 102(2):451–461

    PubMed  Google Scholar 

  104. Gnesin S, Canetti L, Adib S, Cherbuin N, Silva Monteiro M, Bize P et al (2016) Partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med: Off Publ, Soc Nucl Medicine 57(11):1672–1678

    CAS  Google Scholar 

  105. Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ et al (2016) Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging 43(1):42–51

    CAS  Google Scholar 

  106. Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst T, Iravani A et al (2019) Dosimetry of (177)Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med 60(4):517–523

    CAS  PubMed  Google Scholar 

  107. Lassmann M, Eberlein U (2018) The Relevance of Dosimetry in Precision Medicine. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 59(10):1494–1499

    CAS  Google Scholar 

  108. Klein R, Hung GU, Wu TC, Huang WS, Li D, deKemp RA et al (2014) Feasibility and operator variability of myocardial blood flow and reserve measurements with (9)(9)mTc-sestamibi quantitative dynamic SPECT/CT imaging. J Nucl Cardiol: Off Publ Am Soc Nucl Cardiology 21(6):1075–1088

    Google Scholar 

  109. Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC et al (2014) Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging 41(12):2294–2306

    CAS  PubMed  Google Scholar 

  110. Lee H, Kim JH, Kang YK, Moon JH, So Y, Lee WW (2016) Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement. Medicine 95(27):e4170

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim JY, Kim JH, Moon JH, Kim KM, Oh TJ, Lee DH et al (2018) Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis. Korean J Radiol 19(3):470–480

    PubMed  PubMed Central  Google Scholar 

  112. Dong F, Li L, Bian Y, Li G, Han X, Li M et al (2019) Standardized uptake value using thyroid quantitative SPECT/CT for the diagnosis and evaluation of graves’ disease: a prospective multicenter study. Biomed Res Int 2019:7589853

    PubMed  PubMed Central  Google Scholar 

  113. Park J, Bae S, Seo S, Park S, Bang JI, Han JH et al (2019) Measurement of glomerular filtration rate using quantitative SPECT/CT and deep-learning-based kidney segmentation. Sci Rep 9(1):4223

    PubMed  PubMed Central  Google Scholar 

  114. Liss AL, Marsh RB, Kapadia NS, McShan DL, Rogers VE, Balter JM et al (2017) Decreased lung perfusion after breast/chest wall irradiation: quantitative results from a prospective clinical trial. Int J Radiat Oncol Biol Phys 97(2):296–302

    PubMed  Google Scholar 

  115. Robin P, Klein R, Gardner J, Ziebarth B, Bazarjani S, Razavi S et al (2019) Quantitative analysis of technetium-99m-sestamibi uptake and washout in parathyroid scintigraphy supports dual mechanisms of lesion conspicuity. Nucl Med Commun

    Google Scholar 

  116. Kim J, Lee H, Lee H, Bang JI, Kang YK, Bae S et al (2018) Quantitative single-photon emission computed tomography/computed tomography for evaluation of salivary gland dysfunction in sjogren’s syndrome patients. Nucl Med Mol Imaging 52(5):368–376

    PubMed  PubMed Central  Google Scholar 

  117. Nakamoto R, Nakamoto Y, Ishimori T, Togashi K (2016) Clinical significance of quantitative 123I-MIBG SPECT/CT analysis of pheochromocytoma and paraganglioma. Clin Nucl Med 41(11):e465–e472

    PubMed  Google Scholar 

  118. Welz F, Sanders JC, Kuwert T, Maler J, Kornhuber J, Ritt P (2016) Absolute SPECT/CT quantification of cerebral uptake of 99mTc-HMPAO for patients with neurocognitive disorders. Nukl Nucl Med 55(4):158–165

    Google Scholar 

  119. Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK (2009) Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol 54(7):1935–1950

    PubMed  Google Scholar 

  120. Hapdey S, Soret M, Buvat I (2006) Quantification in simultaneous (99m)Tc/(123)I brain SPECT using generalized spectral factor analysis: a Monte Carlo study. Phys Med Biol 51(23):6157–6171

    PubMed  Google Scholar 

  121. Bailey DL, Willowson KP (2014) Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 41(1):17–25

    Google Scholar 

  122. Ritt P, Vija H, Hornegger J, Kuwert T (2011) Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 38(1):69–77

    Google Scholar 

  123. Ritt P, Sanders J, Kuwert T (2014) SPECT/CT technology. Clin Transl Imaging 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ritt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritt, P., Kuwert, T. (2020). Quantitative SPECT/CT—Technique and Clinical Applications. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics