Skip to main content

Bond Behavior of TRM Systems and Reinforcement of Masonry Arches: Testing and Modelling

  • Conference paper
  • First Online:
Proceedings of XXIV AIMETA Conference 2019 (AIMETA 2019)

Abstract

The paper addresses the results of experimental and analytical investigations on composite systems able to reduce structural vulnerability of arches. Two composites, consisting of a PBO (propylbenzodioxole) fibre textile or a carbon fibre textile coupled with a cement-based matrix, are considered. Experimental results on bond capacity between composites and bricks and on the structural behaviour of unreinforced and extrados-reinforced 1:2 scale masonry arches, tested under vertical load, are presented. The global load slip law deduced from double-shear tests is employed to predict the load displacement path followed by an arch reinforced at the extrados through the two composites. The analytical model, which exploits stationarity of potential energy of acting forces, is validated through the experimental results on the reinforced reduced scale arch. Results show how the initial response is tackled by the model. The procedure could be refined and extended to other curved elements (e.g. pointed and ogee arches, vaults and domes) and loading conditions. A further improvement may come from the use of test results on convex surfaces, it being known that the bonding behaviour is improved with respect to that on plane surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouris, L.A.S., Triantafillou, T.C.: State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr. Build. Mater. 188, 1221–1233 (2018)

    Google Scholar 

  2. Alecci, V., De Stefano, M., Luciano, R., Rovero, L., Stipo, G.: Experimental investigation on bond behavior of cement-matrix–based composites for strengthening of masonry structures. J. Compos. Constr. 20(1), 04015041 (2015)

    Google Scholar 

  3. Alecci, V., Focacci, F., Rovero, L., Stipo, G., De Stefano, M.: Extrados strengthening of brick masonry arches with PBO–FRCM composites: experimental and analytical investigations. Compos. Struct. 149, 184–196 (2016)

    Google Scholar 

  4. Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L., Luciano, R.: Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Compos. Part B Eng. 10, 228–239 (2016)

    Google Scholar 

  5. Rovero, L., Focacci, F., Stipo, G.: Structural behavior of arch models strengthened using fiber-reinforced polymer strips of different lengths. J. Compos. Constr. 17(2), 249–258 (2012)

    Google Scholar 

  6. Rotunno, T., Rovero, L., Tonietti, U., Bati, S.B.: Experimental study of bond behavior of CFRP-to-brick joints. J. Compos. Constr. 19(3), 04014063 (2014)

    Google Scholar 

  7. Pantò, B., Cannizzaro, F., Caddemi, S., Caliò, I., Chácara, C., Lourenço, P.: Nonlinear modelling of curved masonry structures after seismic retrofit through FRP reinforcing. Buildings 7(3), 79 (2017)

    Google Scholar 

  8. Caddemi, S., Caliò, I., Cannizzaro, F., Lourenço, P., Pantò, B.: FRP-reinforced masonry structures: numerical modeling by means of a new discrete element approach. In: Papadrakakis, M., Fragiadakis, M. (eds.) 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2017), Rhodes, Greece, 15–17 June 2017 (2017)

    Google Scholar 

  9. de Felic, G., Aiello, M.A., Caggegi, C., Ceroni, F., De Santis, S., Garbin, E., Gattesco, N., Hojdys, Ł., Krajewski, P., Kwiecień, A., Leone, M.: Recommendation of RILEM technical committee 250-CSM: test method for textile reinforced mortar to substrate bond characterization. Mater. Struct. 51(4), 95 (2018)

    Google Scholar 

  10. Caggegi, C., Carozzi, F.G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., Zuccarino, L.: Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Compos. Part B Eng. 127, 175–195 (2017)

    Google Scholar 

  11. Carozzi, F.G., Bellini, A., D’Antino, T., de Felice, G., Hojdys, Ł., Poggi, C.: Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos. Part B Eng. 128, 100–119 (2017)

    Google Scholar 

  12. Carozzi, F.G., Poggi, C., Bertolesi, E., Milani, G.: Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: experimental evaluation. Compos. Struct. 187, 466–480 (2018)

    Google Scholar 

  13. D’Antino, T., Papanicolaou, C.: Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 127, 78–91 (2017)

    Google Scholar 

  14. Sinicropi, D., Perria, E., Galassi, S., Paradiso, M., Borri, A.: Artificial ageing of mortar prisms reinforced through steel, glass and organic fibres. Key Eng. Mater. 624, 542–550 (2015)

    Google Scholar 

  15. Donnini, J., Corinaldesi, V.: Mechanical characterization of different FRCM systems for structural reinforcement. Constr. Build. Mater. 145, 565–575 (2017)

    Google Scholar 

  16. Barducci, S., Alecci, V., De Stefano, M., Misseri, G., Rovero, L., Stipo, G.: Experimental and analytical investigations on the bond behavior of Basalt-FRCM systems. J. Compos. Constr. (2019). https://doi.org/10.1061/(asce)cc.1943-5614.0000985

  17. Caporale, A., Luciano, R., Rosati, L.: Limit analysis of masonry arches with externally bonded FRP reinforcements. Comput. Methods Appl. Mech. Eng. 196(1–3), 247–260 (2006)

    Google Scholar 

  18. Galassi, S.: A numerical procedure for failure mode detection of masonry arches reinforced with fiber reinforced polymeric materials. In: IOP Conference Series: Materials Science and Engineering, vol. 369, no. 1, p. 012038 (2018). https://doi.org/10.1088/1757-899x/369/1/012038

  19. Galassi, S.: Analysis of masonry arches reinforced with FRP sheets: experimental results and numerical evaluations. In: MATEC Web of Conferences, vol. 207, p. 01002. EDP Sciences (2018). https://doi.org/10.1051/matecconf/201820701002

  20. Cancelliere, I., Imbimbo, M., Sacco, E.: Experimental tests and numerical modeling of reinforced masonry arches. Eng. Struct. 32(3), 776–792 (2010)

    Google Scholar 

  21. Elmalich, D., Rabinovitch, O.: Nonlinear analysis of masonry arches strengthened with composite materials. J. Eng. Mech. 136(8), 996–1005 (2010)

    Google Scholar 

  22. Bertolesi, E., Milani, G., Carozzi, F.G., Poggi, C.: Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: numerical analyses. Compos. Struct. 187, 385–402 (2018)

    Google Scholar 

  23. Olivito, R.S., Codispoti, R., Cevallos, O.A.: Bond behavior of Flax-FRCM and PBO-FRCM composites applied on clay bricks: experimental and theoretical study. Compos. Struct. 146, 221–231 (2016)

    Google Scholar 

  24. UNI-EN 772-1: Methods of test for masonry units determination of compressive strength (2007)

    Google Scholar 

  25. UNI-EN 1015-11: Methods of test for mortar for masonry - determination of flexural and compressive strength of hardened mortar (2007)

    Google Scholar 

  26. Oppenheim, I.J.: The masonry arch as a four-link mechanism under base motion. Earthq. Eng. Struct. Dyn. 21(11), 1005–1017 (1992)

    Google Scholar 

  27. Misseri, G., Rovero, L.: Parametric investigation on the dynamic behaviour of masonry pointed arches. Arch. Appl. Mech. 87(3), 385–404 (2017)

    Google Scholar 

  28. Misseri, G., DeJong, M.J., Rovero, L.: Experimental and numerical investigation of the collapse of pointed masonry arches under quasi-static horizontal loading. Eng. Struct. 173, 180–190 (2018)

    Google Scholar 

  29. Misseri, G., Rovero, L., Stipo, G., Barducci, S., Alecci, V., De Stefano, M.: Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches. Compos. Struct. 210, 526–537 (2019)

    Google Scholar 

  30. De Lorenzis, L., Zavarise, G.: Debonding analysis of thin plates from curved substrates. Eng. Fract. Mech. 77(16), 3310–3328 (2010)

    Google Scholar 

  31. Malena, M.: Closed-form solution to the debonding of mortar-based composites on curved substrates. Compos. Part B Eng. 139, 249–258 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Misseri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Misseri, G., Stipo, G., Galassi, S., Rovero, L. (2020). Bond Behavior of TRM Systems and Reinforcement of Masonry Arches: Testing and Modelling. In: Carcaterra, A., Paolone, A., Graziani, G. (eds) Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41057-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41057-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41056-8

  • Online ISBN: 978-3-030-41057-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics