Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

Cardiac magnetic resonance (MR) imaging can detect infarct scar, a major cause of lethal arrhythmia and heart failure. Here, we describe a robust image processing pipeline developed to quantitatively analyze collagen density and features in a pig model of chronic fibrosis. Specifically, we use ex vivo diffusion tensor imaging (DTI) (\(0.6 \times 0.6 \times 1.2\) mm resolution) to calculate fractional anisotropy maps in: healthy tissue, infarct core (IC) and gray zone (GZ) (i.e., a mixture of viable myocytes and collagen fibrils bordering IC and healthy zones). The 3 zones were validated using collagen-sensitive histological slides co-registered with MR images. Our results showed a significant (\(\mathrm{p}< 0.05\)) reduction in the mean FA values of GZ (by 17%) and IC (by 44%) compared to healthy areas; however, we found that these differences do not depend on the location of occluded coronary artery (LAD vs LCX). This work validates the utility of DTI-MR imaging for fibrosis quantification, with histological validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pathcore.com/sedeen/.

  2. 2.

    http://dsi-studio.labsolver.org.

References

  1. Bello, D., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. Coll. Cardiol. 45(7), 1104–1108 (2005)

    Article  Google Scholar 

  2. Jiang, H., van Zijl, P.C., Kim, J., Pearlson, G.D., Mori, S.: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 81(2), 106–116 (2006)

    Article  Google Scholar 

  3. Li, M., et al.: Pipeline to build and test robust 3D T1 mapping-based heart models for EP interventions: preliminary results. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 64–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_8

    Chapter  Google Scholar 

  4. Lin, P., et al.: High resolution imaging and histopathological characterization of myocardial infarction. Biophys. J. 116(3), 231a (2019)

    Article  Google Scholar 

  5. Martel, A.L., et al.: An image analysis resource for cancer research: PIIP—Pathology Image Informatics Platform for visualization, analysis, and management. Cancer Res. 77(21), e83–e86 (2017)

    Article  Google Scholar 

  6. Mekkaoui, C., Reese, T.G., Jackowski, M.P., Bhat, H., Sosnovik, D.E.: Diffusion MRI in the heart. NMR Biomed. 30(3), e3426 (2017)

    Article  Google Scholar 

  7. Nguyen, C., et al.: In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: a motion compensated diffusion-prepared balanced steady-state free precession approach: 3D high resolution cardiac DW-MRI via diffusion-prepared bSSFP. Magn. Reson. Med. 72(5), 1257–1267 (2014)

    Article  Google Scholar 

  8. Pop, M., et al.: Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys. Med. Biol. 58(15), 5009–5028 (2013)

    Article  Google Scholar 

  9. Pop, M., et al.: High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis. IEEE Trans. Biomed. Eng. 61(12), 2930–2938 (2014)

    Article  Google Scholar 

  10. Pop, M., et al.: Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation. Med. Image Anal. 16(2), 505–523 (2012)

    Article  Google Scholar 

  11. Prabhu, S.D., Frangogiannis, N.G.: The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119(1), 91–112 (2016)

    Article  Google Scholar 

  12. Valderrabano, M.: Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog. Biophys. Mol. Biol. 94(1–2), 144–168 (2007)

    Article  Google Scholar 

  13. Whittaker, P., Boughner, D.R., Kloner, R.A.: Analysis of healing after myocardial infarction using polarized light microscopy. Am. J. Pathol. 134(4), 15 (1989)

    Google Scholar 

  14. Winklhofer, S., et al.: Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture. Eur. Radiol. 24(11), 2810–2818 (2014)

    Article  Google Scholar 

  15. Wu, E.X., et al.: MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn. Reson. Med. 58(4), 687–695 (2007)

    Article  Google Scholar 

  16. Wu, Y., Chan, C.W., Nicholls, J.M., Liao, S., Tse, H.F., Wu, E.X.: MR study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J. Magn. Reson. Imaging 29(2), 305–312 (2009)

    Article  Google Scholar 

  17. Wu, Y., Tse, H.F., Wu, E.X.: Diffusion tensor MRI study of myocardium structural remodeling after infarction in porcine model. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1069–1072. IEEE (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank for the following financial support: CIHR Project Grant PJT 153212 (Dr. Mihaela Pop) and UROP Medical Biophysics – University of Toronto summer student award (Peter Lin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, P., Martel, A., Camilleri, S., Pop, M. (2020). Co-registered Cardiac ex vivo DT Images and Histological Images for Fibrosis Quantification. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics