Skip to main content

Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third ‘gasotransmitter’ in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi Govar A et al (2019) 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol (in press)

    Google Scholar 

  • Abou-Hamdan A et al (2016) Positive feedback during sulfide oxidation fine-tunes cellular affinity for oxygen. Biochim Biophys Acta 1857(9):1464–1472

    Article  PubMed  Google Scholar 

  • Akaike T et al (2017) Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun 8(1):1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res:104083

    Google Scholar 

  • Banerjee R (2017) Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol 37:115–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee R, Zou CG (2005) Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433(1):144–156

    Article  PubMed  Google Scholar 

  • Bao L et al (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys 350(1):95–103

    Article  PubMed  Google Scholar 

  • Bhattacharyya S et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8(11):e79167

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianco CL et al (2016) The chemical biology of the persulfide (RSSH)/perthiyl (RSS.) redox couple and possible role in biological redox signaling. Free Radic Biol Med 101:20–31

    Google Scholar 

  • Bianco S et al (2017) Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox Biol 12:499–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos EM et al (2015) Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia. Br J Pharmacol 172(6):1479–1493

    Article  PubMed  PubMed Central  Google Scholar 

  • Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21(1):212–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai WJ et al (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76(1):29–40

    Article  PubMed  Google Scholar 

  • Cao X et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31(1):1–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539

    Article  PubMed  Google Scholar 

  • Cuevasanta E, Moller MN, Alvarez B (2017) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617:9–25

    Article  PubMed  Google Scholar 

  • Druzhyna N et al (2016) Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine beta-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol Res 113(Pt A):18–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ereno-Orbea J et al (2013) Structural basis of regulation and oligomerization of human cystathionine beta-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci U S A 110(40):E3790–E3799

    Article  PubMed  PubMed Central  Google Scholar 

  • Ereno-Orbea J et al (2014) Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine. Proc Natl Acad Sci U S A 111(37):E3845–E3852

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagerberg L et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13(2):397–406

    Article  PubMed  Google Scholar 

  • Fawcett EM et al (2015) Hypoxia disrupts proteostasis in Caenorhabditis elegans. Aging Cell 14(1):92–101

    Article  PubMed  Google Scholar 

  • Filipovic MR et al (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118(3):1253–1337

    Article  PubMed  Google Scholar 

  • Frasdorf B, Radon C, Leimkuhler S (2014) Characterization and interaction studies of two isoforms of the dual localized 3-mercaptopyruvate sulfurtransferase TUM1 from humans. J Biol Chem 289(50):34543–34556

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu M et al (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109(8):2943–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Giuffrè A, Vicente JB (2018) Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxidative Med Cell Longev 2018:6290931

    Article  Google Scholar 

  • Giuffrè A et al (2002) Nitric oxide reacts with the single-electron reduced active site of cytochrome c oxidase. J Biol Chem 277(25):22402–22406

    Article  PubMed  Google Scholar 

  • Goncalves-Dias C et al (2019) Mercapturate pathway in the tubulocentric perspective of diabetic kidney disease. Nephron:1–7

    Google Scholar 

  • Goubern M et al (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21(8):1699–1706

    Article  PubMed  Google Scholar 

  • Hellmich MR et al (2015) The therapeutic potential of cystathionine beta-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 22(5):424–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Hine C et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160(1–2):132–144

    Article  PubMed  Google Scholar 

  • Ianaro A, Cirino G, Wallace JL (2016) Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol Res 111:652–658

    Article  PubMed  Google Scholar 

  • Ida T et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111(21):7606–7611

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson MR, Loll PJ, Jorns MS (2019) X-ray structure of human sulfide: quinone oxidoreductase: insights into the mechanism of mitochondrial hydrogen sulfide oxidation. Structure 27(5):794–805. e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarosz AP et al (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521

    Article  PubMed  Google Scholar 

  • Jensen AR et al (2017) Hydrogen sulfide: a potential novel therapy for the treatment of ischemia. Shock 48(5):511–524

    Article  PubMed  Google Scholar 

  • Kabil O et al (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15(2):363–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai S et al (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16(3):203–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasamatsu S et al (2016) Redox signaling regulated by cysteine persulfide and protein polysulfidation. Molecules 21(12):E1721

    Article  Google Scholar 

  • Kimura Y et al (2017) 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S. Sci Rep 7(1):10459

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A et al (2018) Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-beta-synthase. Sci Rep 8(1):2474

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagoutte E et al (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 1797(8):1500–1511

    Article  PubMed  Google Scholar 

  • Lencesova L et al (2016) Hypoxic conditions increases H(2)S-induced ER stress in A2870 cells. Mol Cell Biochem 414(1–2):67–76

    Article  PubMed  Google Scholar 

  • Leschelle X et al (2005) Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim Biophys Acta 1725(2):201–212

    Article  PubMed  Google Scholar 

  • Leskova A et al (2017) Role of thiosulfate in hydrogen sulfide-dependent redox signaling in endothelial cells. Am J Physiol Heart Circ Physiol 313(2):H256–H264

    Article  PubMed  PubMed Central  Google Scholar 

  • Libiad M et al (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289(45):30901–30910

    Article  PubMed  PubMed Central  Google Scholar 

  • Libiad M et al (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32):12077–12090

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden DR et al (2012) Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. Br J Pharmacol 165(7):2178–2190

    Article  PubMed  PubMed Central  Google Scholar 

  • Malagrino F et al (2019) Hydrogen sulfide oxidation: adaptive changes in mitochondria of SW480 colorectal cancer cells upon exposure to hypoxia. Oxidative Med Cell Longev 2019:8102936

    Article  Google Scholar 

  • Marutani E et al (2015) Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc 4(11):e002125

    Article  PubMed  PubMed Central  Google Scholar 

  • Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mastronicola D et al (2003) Control of respiration by nitric oxide in Keilin-Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells. Cell Mol Life Sci 60(8):1752–1759

    Article  PubMed  Google Scholar 

  • Matallo J et al (2014) Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations. Nitric Oxide 41:79–84

    Article  PubMed  PubMed Central  Google Scholar 

  • McCorvie TJ et al (2014) Inter-domain communication of human cystathionine beta-synthase: structural basis of S-adenosyl-L-methionine activation. J Biol Chem 289(52):36018–36030

    Article  PubMed  PubMed Central  Google Scholar 

  • Millikin R et al (2016) The chemical biology of protein hydropersulfides: studies of a possible protective function of biological hydropersulfide generation. Free Radic Biol Med 97:136–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11(7):457–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Modis K et al (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27(2):601–611

    Article  PubMed  Google Scholar 

  • Modis K et al (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113(Pt A):116–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Morikawa T et al (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A 109(4):1293–1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudd SH et al (1965) Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem 240(11):4382–4392

    Article  PubMed  Google Scholar 

  • Mustafa AK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa AK et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109(11):1259–1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Muz B et al (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92

    Article  PubMed  Google Scholar 

  • Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29

    Article  PubMed  Google Scholar 

  • Nicholls P et al (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41(5):1312–1316

    Article  PubMed  Google Scholar 

  • Niu WN et al (2015) S-glutathionylation enhances human cystathionine beta-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22(5):350–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu W et al (2018) Allosteric control of human cystathionine beta-synthase activity by a redox active disulfide bond. J Biol Chem 293(7):2523–2533

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes SC et al (2018) Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci Rep 8(1):9513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogasawara Y, Isoda S, Tanabe S (1994) Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 17(12):1535–1542

    Article  PubMed  Google Scholar 

  • Olson KR (2015) Hydrogen sulfide as an oxygen sensor. Antioxid Redox Signal 22(5):377–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson KR et al (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209(Pt 20):4011–4023

    Article  PubMed  Google Scholar 

  • Papapetropoulos A et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106(51):21972–21977

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul BD, Snyder SH (2015) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40(11):687–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460(2):299–307

    Article  PubMed  Google Scholar 

  • Pettinati I et al (2015) Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Hum Mol Genet 24(9):2458–2469

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietri R, Roman-Morales E, Lopez-Garriga J (2011) Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 15(2):393–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Puccinelli MT, Stan SD (2017) Dietary bioactive diallyl trisulfide in cancer prevention and treatment. Int J Mol Sci 18(8):E1645

    Article  Google Scholar 

  • Reis A, Stern A, Monteiro HP (2019) S-nitrosothiols and H2S donors: potential chemo-therapeutic agents in cancer. Redox Biol 27:101190

    Google Scholar 

  • Rios-Gonzalez BB et al (2014) Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 133:78–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockwell S et al (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose P et al (2005) Hydrogen sulfide protects colon cancer cells from chemopreventative agent beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 11(26):3990–3997

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha S et al (2016) Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 30(1):441–456

    Article  PubMed  Google Scholar 

  • Samanta D, Semenza GL (2018) Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim Biophys Acta Rev Cancer 1870(1):15–22

    Article  PubMed  Google Scholar 

  • Sarti P et al (2012) The chemical interplay between nitric oxide and mitochondrial cytochrome c oxidase: reactions, effectors and pathophysiology. Int J Cell Biol 2012:571067

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi F et al (2016) Endogenous hydrogen sulfide enhances cell proliferation of human gastric cancer AGS cells. Biol Pharm Bull 39(5):887–890

    Article  PubMed  Google Scholar 

  • Semenza GL (2006) Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 91(5):803–806

    Article  PubMed  Google Scholar 

  • Smith RP, Gosselin RE (1966) On the mechanism of sulfide inactivation by methemoglobin. Toxicol Appl Pharmacol 8(1):159–172

    Article  PubMed  Google Scholar 

  • Solaini G et al (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797(6–7):1171–1177

    Article  PubMed  Google Scholar 

  • Stokes E et al (2018) Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sci 213:116–125

    Article  PubMed  Google Scholar 

  • Sun Q et al (2009) Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 284(5):3076–3085

    Article  PubMed  Google Scholar 

  • Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15(3):185–203

    Article  PubMed  Google Scholar 

  • Szabo C et al (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110(30):12474–12479

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo C et al (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczesny B et al (2016) Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci Rep 6:36125

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano N et al (2014) Hypoxia-inducible factors regulate human and rat cystathionine beta-synthase gene expression. Biochem J 458(2):203–211

    Article  PubMed  Google Scholar 

  • Tang G et al (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6):1757–1764

    Article  PubMed  Google Scholar 

  • Teng H et al (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 110(31):12679–12684

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161(2):467–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomita M, Nagahara N, Ito T (2016) Expression of 3-mercaptopyruvate sulfurtransferase in the mouse. Molecules 21(12):E1707

    Article  Google Scholar 

  • Untereiner AA et al (2018) Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 149:174–185

    Article  PubMed  Google Scholar 

  • Valvona CJ et al (2016) The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17

    Article  PubMed  Google Scholar 

  • Vicente JB et al (2014) NO∗ binds human cystathionine beta-synthase quickly and tightly. J Biol Chem 289(12):8579–8587

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente JB et al (2016a) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine beta-synthase. Biochim Biophys Acta 1857(8):1127–1138

    Article  PubMed  Google Scholar 

  • Vicente JB et al (2016b) S-Adenosyl-l-methionine modulates CO and NO∗ binding to the human H2S-generating enzyme cystathionine beta-synthase. J Biol Chem 291(2):572–581

    Article  PubMed  Google Scholar 

  • Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17(1):22–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitvitsky V et al (2015) Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem 290(13):8310–8320

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitvitsky V et al (2017) Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products. J Biol Chem 292(13):5584–5592

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace JL et al (2018) Hydrogen sulfide-releasing therapeutics: translation to the clinic. Antioxid Redox Signal 28(16):1533–1540

    Article  PubMed  Google Scholar 

  • Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896

    Article  PubMed  Google Scholar 

  • Wang M, Guo Z, Wang S (2014) Regulation of cystathionine gamma-lyase in mammalian cells by hypoxia. Biochem Genet 52(1–2):29–37

    Article  PubMed  Google Scholar 

  • Wang L et al (2018) A pharmacological probe identifies cystathionine beta-synthase as a new negative regulator for ferroptosis. Cell Death Dis 9(10):1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270

    Article  PubMed  Google Scholar 

  • Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314

    Article  PubMed  Google Scholar 

  • Wu H, Chen Q (2015) Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal 22(12):1032–1046

    Article  PubMed  Google Scholar 

  • Wu B et al (2012) Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1alpha. Br J Pharmacol 167(7):1492–1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie H, Simon MC (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292(41):16825–16832

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav PK et al (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288(27):20002–20013

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav PK et al (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138(1):289–299

    Article  PubMed  Google Scholar 

  • Yagdi E et al (2016) Garlic-derived natural polysulfanes as hydrogen sulfide donors: friend or foe? Food Chem Toxicol 95:219–233

    Article  PubMed  Google Scholar 

  • Yang G et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919

    Article  PubMed  Google Scholar 

  • Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534

    Article  PubMed  Google Scholar 

  • Yuan G et al (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8(373):ra37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2011) Hydrogen sulfide contributes to hypoxia-induced radioresistance on hepatoma cells. J Radiat Res 52(5):622–628

    Article  PubMed  Google Scholar 

  • Zhao K et al (2014) S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 15(7):792–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhen Y et al (2015) Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-kappaB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 46(5):2194–2204

    Article  PubMed  Google Scholar 

  • Zuhra K et al (2019) Screening pyridine derivatives against human hydrogen sulfide-synthesizing enzymes by orthogonal methods. Sci Rep 9(1):684

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Authors are grateful for funding from Ministero dell’Istruzione, dell’Università e della Ricerca of Italy (PNR-CNR Aging Program 2012–2014 and PRIN 20158EB2CM_003). iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by Fundação para a Ciência e Tecnologia/Ministério da Ciência e do Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement, is acknowledged by CST and JBV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Giuffrè or João B. Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giuffrè, A., Tomé, C.S., Fernandes, D.G.F., Zuhra, K., Vicente, J.B. (2020). Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment. In: Serpa, J. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1219. Springer, Cham. https://doi.org/10.1007/978-3-030-34025-4_17

Download citation

Publish with us

Policies and ethics