Skip to main content

Deep Residual Learning for Instrument Segmentation in Robotic Surgery

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11861))

Included in the following conference series:

Abstract

Detection, tracking, and pose estimation of surgical instruments provide critical information that can be used to correct inaccuracies in kinematic data in robotic-assisted surgery. Such information can be used for various purposes including integration of pre- and intra-operative images into the endoscopic view. In some cases, automatic segmentation of surgical instruments is a crucial step towards full instrument pose estimation but it can also be solely used to improve user interactions with the robotic system. In our work we focus on binary instrument segmentation, where the objective is to label every pixel as instrument or background and instrument part segmentation, where different semantically separate parts of the instrument are labeled. We improve upon previous work by leveraging recent techniques such as deep residual learning and dilated convolutions and advance both binary-segmentation and instrument part segmentation performance on the EndoVis 2017 Robotic Instruments dataset. The source code for the experiments reported in the paper has been made public (https://github.com/warmspringwinds/pytorch-segmentation-detection).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow the practice of previous work and use simplified definition without mirroring and centering the filter [5].

References

  1. Allan, M., et al.: Image based surgical instrument pose estimation with multi-class labelling and optical flow. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 331–338. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_41

    Chapter  Google Scholar 

  2. Allan, M., et al.: 2017 robotic instrument segmentation challenge. arXiv preprint arXiv:1902.06426 (2019)

  3. Bhayani, S.B., Andriole, G.L.: Three-dimensional (3D) vision: does it improve laparoscopic skills? An assessment of a 3D head-mounted visualization system. Rev. Urol. 7(4), 211 (2005)

    Google Scholar 

  4. Bouget, D., Benenson, R., Omran, M., Riffaud, L., Schiele, B., Jannin, P.: Detecting surgical tools by modelling local appearance and global shape. IEEE Trans. Med. Imaging 34(12), 2603–2617 (2015)

    Article  Google Scholar 

  5. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv preprint arXiv:1606.00915 (2016)

  6. García-Peraza-Herrera, L.C., et al.: Real-time segmentation of non-rigid surgical tools based on deep learning and tracking. In: Peters, T., et al. (eds.) CARE 2016. LNCS, vol. 10170, pp. 84–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54057-3_8

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Laina, I., et al.: Concurrent segmentation and localization for tracking of surgical instruments. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 664–672. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_75

    Chapter  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. Okamura, A.M.: Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 19(1), 102 (2009)

    Article  Google Scholar 

  12. Pezzementi, Z., Voros, S., Hager, G.D.: Articulated object tracking by rendering consistent appearance parts. In: 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3940–3947. IEEE (2009)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)

    Google Scholar 

  14. Speidel, S., Delles, M., Gutt, C., Dillmann, R.: Tracking of instruments in minimally invasive surgery for surgical skill analysis. In: Yang, G.-Z., Jiang, T.Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 148–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11812715_19

    Chapter  Google Scholar 

  15. Taylor, R.H., Menciassi, A., Fichtinger, G., Dario, P.: Medical robotics and computer-integrated surgery. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1199–1222. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_53

    Chapter  Google Scholar 

  16. Tonet, O., Ramesh, T.U., Megali, G., Dario, P.: Tracking endoscopic instruments without localizer: image analysis-based approach. Stud. Health Technol. Inform. 119, 544–549 (2005)

    Google Scholar 

  17. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Pakhomov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pakhomov, D., Premachandran, V., Allan, M., Azizian, M., Navab, N. (2019). Deep Residual Learning for Instrument Segmentation in Robotic Surgery. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics