Skip to main content

The Role of RB in Prostate Cancer Progression

  • Chapter
  • First Online:
Prostate Cancer

Abstract

The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, “non-canonical” roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.S. Carter, C.M. Ewing, W.S. Ward, B.F. Treiger, T.W. Aalders, J.A. Schalken, et al., Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 87(22), 8751–8755 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Bookstein, D.C. Allred, Recessive oncogenes. Cancer 71(3 Suppl), 1179–1186 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. W. Liu, C.C. Xie, C.Y. Thomas, S.T. Kim, J. Lindberg, L. Egevad, et al., Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer 119(13), 2405–2412 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network, The molecular taxonomy of primary prostate cancer. Cell 163(4), 1011–1025 (2015)

    Article  CAS  Google Scholar 

  5. A.G. Sowalsky, H. Ye, M. Bhasin, E.M. Van Allen, M. Loda, R.T. Lis, et al., Neoadjuvant-intensive androgen deprivation therapy selects for prostate tumor foci with diverse subclonal oncogenic alterations. Cancer Res. 78(16), 4716–4730 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Sharma, W.S. Yeow, A. Ertel, I. Coleman, N. Clegg, C. Thangavel, et al., The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120(12), 4478–4492 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Armenia, S.A.M. Wankowicz, D. Liu, J. Gao, R. Kundra, E. Reznik, et al., The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50(5), 645–651 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.A. Hamid, K.P. Gray, G. Shaw, L.E. MacConaill, C. Evan, B. Bernard, et al., Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer. Eur. Urol. 76(1), 89–97 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. H.L. Tan, A. Sood, H.A. Rahimi, W. Wang, N. Gupta, J. Hicks, et al., Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20(4), 890–903 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. M. Hassler, S. Singh, W.W. Yue, M. Luczynski, R. Lakbir, F. Sanchez-Sanchez, et al., Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol. Cell. 28(3), 371–385 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T.J. Liban, E.M. Medina, S. Tripathi, S. Sengupta, R.W. Henry, N.E. Buchler, et al., Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc. Natl. Acad. Sci. U. S. A. 114(19), 4942–4947 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. F.A. Dick, S.M. Rubin, Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14(5), 297–306 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. E.J. Morris, N.J. Dyson, Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. S. Yeh, H. Miyamoto, K. Nishimura, H. Kang, J. Ludlow, P. Hsiao, et al., Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. Biochem. Biophys. Res. Commun. 248(2), 361–367 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. H. Huang, J. Yee, J. Shew, P. Chen, R. Bookstein, T. Friedmann, et al., Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242(4885), 1563–1566 (1988)

    Article  CAS  PubMed  Google Scholar 

  16. R. Takahashi, T. Hashimoto, H.J. Xu, S.X. Hu, T. Matsui, T. Miki, et al., The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 88(12), 5257–5261 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X.Q. Qin, T. Chittenden, D.M. Livingston, W.G. Kaelin Jr., Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6(6), 953–964 (1992)

    Article  CAS  PubMed  Google Scholar 

  18. J.R. Nevins, E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258(5081), 424–429 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. R.A. Weinberg, The retinoblastoma protein and cell cycle control. Cell 81(3), 323–330 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. C.J. Sherr, D. Beach, G.I. Shapiro, Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6(4), 353–367 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. A. Deshpande, P. Sicinski, P.W. Hinds, Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17), 2909–2915 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. N.J. Dyson, RB1: a prototype tumor suppressor and an enigma. Genes Dev. 30(13), 1492–1502 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B.S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, B.S. Carver, et al., Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1), 11–22 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C.S. Foster, A. Falconer, A.R. Dodson, A.R. Norman, N. Dennis, A. Fletcher, et al., Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23(35), 5871–5879 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. A. Radu, V. Neubauer, T. Akagi, H. Hanafusa, M.M. Georgescu, PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol. Cell. Biol. 23(17), 6139–6149 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Gil, P. Kerai, M. Lleonart, D. Bernard, J.C. Cigudosa, G. Peters, et al., Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res. 65(6), 2179–2185 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. D.L. Burkhart, J. Sage, Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8(9), 671–682 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Giacinti, A. Giordano, RB and cell cycle progression. Oncogene 25(38), 5220–5227 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. R. Hill, Y. Song, R.D. Cardiff, T. Van Dyke, Heterogeneous tumor evolution initiated by loss of pRb function in a preclinical prostate cancer model. Cancer Res. 65(22), 10243–10254 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. F. Bai, X.H. Pei, P.P. Pandolfi, Y. Xiong, p18 Ink4c and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol. Cell. Biol. 26(12), 4564–4576 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Bai, D.A. DeMason, Hormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips. Plant Cell Physiol. 47(7), 935–948 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. A. Tyagi, C. Agarwal, R. Agarwal, Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention. Mol. Cancer Ther. 1(7), 525–532 (2002)

    CAS  PubMed  Google Scholar 

  35. E.L. DuPree, S. Mazumder, A. Almasan, Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res. 64(13), 4390–4393 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. B.D. Lehmann, A.M. Brooks, M.S. Paine, W.H. Chappell, J.A. McCubrey, D.M. Terrian, Distinct roles for p107 and p130 in Rb-independent cellular senescence. Cell Cycle 7(9), 1262–1268 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. K. Helin, Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8(1), 28–35 (1998)

    Article  CAS  PubMed  Google Scholar 

  38. J.M. Trimarchi, J.A. Lees, Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3(1), 11–20 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. A.P. Bracken, M. Ciro, A. Cocito, K. Helin, E2F target genes: unraveling the biology. Trends Biochem. Sci. 29(8), 409–417 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. H. Muller, A.P. Bracken, R. Vernell, M.C. Moroni, F. Christians, E. Grassilli, et al., E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15(3), 267–285 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A.P. Bracken, D. Pasini, M. Capra, E. Prosperini, E. Colli, K. Helin, EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22(20), 5323–5335 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Kotake, R. Cao, P. Viatour, J. Sage, Y. Zhang, Y. Xiong, pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 21(1), 49–54 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A.F. Fribourg, K.E. Knudsen, M.W. Strobeck, C.M. Lindhorst, E.S. Knudsen, Differential requirements for ras and the retinoblastoma tumor suppressor protein in the androgen dependence of prostatic adenocarcinoma cells. Cell Growth Differ. 11(7), 361–372 (2000)

    CAS  PubMed  Google Scholar 

  44. K. Hofman, J.V. Swinnen, G. Verhoeven, W. Heyns, E2F activity is biphasically regulated by androgens in LNCaP cells. Biochem. Biophys. Res. Commun. 283(1), 97–101 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. S.S. Taneja, S. Ha, M.J. Garabedian, Androgen stimulated cellular proliferation in the human prostate cancer cell line LNCaP is associated with reduced retinoblastoma protein expression. J. Cell. Biochem. 84(1), 188–199 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. X. Yuan, T. Li, H. Wang, T. Zhang, M. Barua, R.A. Borgesi, et al., Androgen receptor remains critical for cell-cycle progression in androgen-independent CWR22 prostate cancer cells. Am. J. Pathol. 169(2), 682–696 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Chen, A.I. Robles, L.A. Martinez, F. Liu, I.B. Gimenez-Conti, C.J. Conti, Expression of G1 cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in androgen-induced prostate proliferation in castrated rats. Cell Growth Differ. 7(11), 1571–1578 (1996)

    CAS  PubMed  Google Scholar 

  48. K.E. Knudsen, K.C. Arden, W.K. Cavenee, Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J. Biol. Chem. 273(32), 20213–20222 (1998)

    Article  CAS  PubMed  Google Scholar 

  49. S.J. Libertini, C.G. Tepper, M. Guadalupe, Y. Lu, D.M. Asmuth, M. Mudryj, E2F1 expression in LNCaP prostate cancer cells deregulates androgen dependent growth, suppresses differentiation, and enhances apoptosis. Prostate 66(1), 70–81 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. J.N. Davis, M.T. McCabe, S.W. Hayward, J.M. Park, M.L. Day, Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells. Cancer Res. 65(9), 3633–3642 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. M.T. McCabe, J.N. Davis, M.L. Day, Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res. 65(9), 3624–3632 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Y. Wang, S.W. Hayward, A.A. Donjacour, P. Young, T. Jacks, J. Sage, et al., Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res. 60(21), 6008–6017 (2000)

    CAS  PubMed  Google Scholar 

  53. M.S. Steiner, C.T. Anthony, Introduction of human chromosome 13 into retinoblastoma-negative metastatic human prostate cancer cells increases their sensitivity to growth inhibition by transforming growth factor-&be;1. Mol. Urol. 3(3), 153–162 (1999)

    CAS  PubMed  Google Scholar 

  54. K.C. Day, M.T. McCabe, X. Zhao, Y. Wang, J.N. Davis, J. Phillips, et al., Rescue of embryonic epithelium reveals that the homozygous deletion of the retinoblastoma gene confers growth factor independence and immortality but does not influence epithelial differentiation or tissue morphogenesis. J. Biol. Chem. 277(46), 44475–44484 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. L.A. Maddison, B.W. Sutherland, R.J. Barrios, N.M. Greenberg, Conditional deletion of Rb causes early stage prostate cancer. Cancer Res. 64(17), 6018–6025 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. Y. Chen, L.A. Martinez, M. LaCava, L. Coghlan, C.J. Conti, Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene 16(15), 1913–1920 (1998)

    Article  CAS  PubMed  Google Scholar 

  57. M.P. Gustafson, C. Xu, J.E. Grim, B.E. Clurman, B.S. Knudsen, Regulation of cell proliferation in a stratified culture system of epithelial cells from prostate tissue. Cell Tissue Res. 325(2), 263–276 (2006)

    Article  PubMed  Google Scholar 

  58. N.M. Greenberg, F. DeMayo, M.J. Finegold, D. Medina, W.D. Tilley, J.O. Aspinall, et al., Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. U. S. A. 92(8), 3439–3443 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.R. Gingrich, R.J. Barrios, R.A. Morton, B.F. Boyce, F.J. DeMayo, M.J. Finegold, et al., Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56(18), 4096–4102 (1996)

    CAS  PubMed  Google Scholar 

  60. J.R. Gingrich, R.J. Barrios, M.W. Kattan, H.S. Nahm, M.J. Finegold, N.M. Greenberg, Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 57(21), 4687–4691 (1997)

    CAS  PubMed  Google Scholar 

  61. P.J. Kaplan-Lefko, T.M. Chen, M.M. Ittmann, R.J. Barrios, G.E. Ayala, W.J. Huss, et al., Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55(3), 219–237 (2003)

    Article  PubMed  Google Scholar 

  62. Z. Zhou, A. Flesken-Nikitin, D.C. Corney, W. Wang, D.W. Goodrich, P. Roy-Burman, et al., Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66(16), 7889–7898 (2006)

    Article  CAS  PubMed  Google Scholar 

  63. Z. Zhou, A. Flesken-Nikitin, A.Y. Nikitin, Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res. 67(12), 5683–5690 (2007)

    Article  CAS  PubMed  Google Scholar 

  64. S.Y. Ku, S. Rosario, Y. Wang, P. Mu, M. Seshadri, Z.W. Goodrich, et al., Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355(6320), 78–83 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. A.K. Tyagi, R.P. Singh, C. Agarwal, D.C. Chan, R. Agarwal, Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition, G2-M arrest, and apoptosis. Clin. Cancer Res. 8(11), 3512–3519 (2002)

    CAS  PubMed  Google Scholar 

  66. R.P. Singh, C. Agarwal, R. Agarwal, Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis 24(3), 555–563 (2003)

    Article  CAS  PubMed  Google Scholar 

  67. M.N. Washington, J.S. Kim, N.L. Weigel, 1alpha,25-dihydroxyvitamin D3 inhibits C4–2 prostate cancer cell growth via a retinoblastoma protein (Rb)-independent G1 arrest. Prostate 71(1), 98–110 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. A. Aparicio, R.B. Den, K.E. Knudsen, Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat. Rev. Urol. 8(10), 562–568 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. C.W. Gregory, R.T. Johnson Jr., S.C. Presnell, J.L. Mohler, F.S. French, Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR22 human prostate cancer xenograft. J. Androl. 22(4), 537–548 (2001)

    CAS  PubMed  Google Scholar 

  70. S.P. Balk, K.E. Knudsen, AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 6, e001 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. A. Grosse, S. Bartsch, A. Baniahmad, Androgen receptor-mediated gene repression. Mol. Cell. Endocrinol. 352(1–2), 46–56 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. G.R. Cunha, W. Ricke, A. Thomson, P.C. Marker, G. Risbridger, S.W. Hayward, et al., Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J. Steroid Biochem. Mol. Biol. 92(4), 221–236 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. L. Antony, F. van der Schoor, S.L. Dalrymple, J.T. Isaacs, Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/beta-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 74(11), 1118–1131 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J.T. Isaacs, W.B. Isaacs, Androgen receptor outwits prostate cancer drugs. Nat. Med. 10(1), 26–27 (2004)

    Article  CAS  PubMed  Google Scholar 

  75. F. Jin, J.D. Fondell, A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression. Nucleic Acids Res. 37(14), 4826–4838 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A.H. Davies, H. Beltran, A. Zoubeidi, Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15(5), 271–286 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. K. Fizazi, N. Tran, L. Fein, N. Matsubara, A. Rodriguez-Antolin, B.Y. Alekseev, et al., Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377(4), 352–360 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. N.D. James, J.S. de Bono, M.R. Spears, N.W. Clarke, M.D. Mason, D.P. Dearnaley, et al., Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377(4), 338–351 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. P.A. Watson, V.K. Arora, C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15(12), 701–711 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. J.N. Davis, K.J. Wojno, S. Daignault, M.D. Hofer, R. Kuefer, M.A. Rubin, et al., Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 66(24), 11897–11906 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. E.D. Martinez, M. Danielsen, Loss of androgen receptor transcriptional activity at the G(1)/S transition. J. Biol. Chem. 277(33), 29719–29729 (2002)

    Article  CAS  PubMed  Google Scholar 

  82. J. Lu, M. Danielsen, Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J. Biol. Chem. 273(47), 31528–31533 (1998)

    Article  CAS  PubMed  Google Scholar 

  83. X. Wang, H. Deng, I. Basu, L. Zhu, Induction of androgen receptor-dependent apoptosis in prostate cancer cells by the retinoblastoma protein. Cancer Res. 64(4), 1377–1385 (2004)

    Article  CAS  PubMed  Google Scholar 

  84. S. Gao, Y. Gao, H.H. He, D. Han, W. Han, A. Avery, et al., Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep. 17(4), 966–976 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. F. Wang, H.K. Koul, Androgen receptor (AR) cistrome in prostate differentiation and cancer progression. Am. J. Clin. Exp. Urol. 5(3), 18–24 (2017)

    PubMed  PubMed Central  Google Scholar 

  86. I. Mallik, M. Davila, T. Tapia, B. Schanen, R. Chakrabarti, Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. Biochim. Biophys. Acta 1783(10), 1737–1744 (2008)

    Article  CAS  PubMed  Google Scholar 

  87. D.M. Altintas, M.S. Shukla, D. Goutte-Gattat, D. Angelov, J.P. Rouault, S. Dimitrov, et al., Direct cooperation between androgen receptor and E2F1 reveals a common regulation mechanism for androgen-responsive genes in prostate cells. Mol. Endocrinol. 26(9), 1531–1541 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. M. Ciro, E. Prosperini, M. Quarto, U. Grazini, J. Walfridsson, F. McBlane, et al., ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69(21), 8491–8498 (2009)

    Article  CAS  PubMed  Google Scholar 

  89. J. DeGregori, D.G. Johnson, Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6(7), 739–748 (2006)

    CAS  PubMed  Google Scholar 

  90. B.N. Chau, J.Y. Wang, Coordinated regulation of life and death by RB. Nat. Rev. Cancer 3(2), 130–138 (2003)

    Article  CAS  PubMed  Google Scholar 

  91. P. Indovina, F. Pentimalli, N. Casini, I. Vocca, A. Giordano, RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 6(20), 17873–17890 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  92. H.L. Borges, J. Bird, K. Wasson, R.D. Cardiff, N. Varki, L. Eckmann, et al., Tumor promotion by caspase-resistant retinoblastoma protein. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15587–15592 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M.L. Day, X. Zhao, C.J. Vallorosi, M. Putzi, C.T. Powell, C. Lin, et al., E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J. Biol. Chem. 274(14), 9656–9664 (1999)

    Article  CAS  PubMed  Google Scholar 

  94. C.A. Carlson, S.P. Ethier, Lack of RB protein correlates with increased sensitivity to UV-radiation-induced apoptosis in human breast cancer cells. Radiat. Res. 154(5), 590–599 (2000)

    Article  CAS  PubMed  Google Scholar 

  95. C. Bowen, M. Birrer, E.P. Gelmann, Retinoblastoma protein-mediated apoptosis after gamma-irradiation. J. Biol. Chem. 277(47), 44969–44979 (2002)

    Article  CAS  PubMed  Google Scholar 

  96. A. Sharma, C.E. Comstock, E.S. Knudsen, K.H. Cao, J.K. Hess-Wilson, L.M. Morey, et al., Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 67(13), 6192–6203 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Y. Mirochnik, D. Veliceasa, L. Williams, K. Maxwell, A. Yemelyanov, I. Budunova, et al., Androgen receptor drives cellular senescence. PLoS One 7(3), e31052 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. J. Roediger, W. Hessenkemper, S. Bartsch, M. Manvelyan, S.S. Huettner, T. Liehr, et al., Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol. Cancer 13, 214 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. D.F. Jarrard, S. Sarkar, Y. Shi, T.R. Yeager, G. Magrane, H. Kinoshita, et al., p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59(12), 2957–2964 (1999)

    CAS  PubMed  Google Scholar 

  100. M.S. Steiner, Y. Wang, Y. Zhang, X. Zhang, Y. Lu, p16/MTS1/INK4A suppresses prostate cancer by both pRb dependent and independent pathways. Oncogene 19(10), 1297–1306 (2000)

    Article  CAS  PubMed  Google Scholar 

  101. E.J. Noonan, R.F. Place, S. Basak, D. Pookot, L.C. Li, miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1(5), 349–358 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  102. H. Sun, Y. Wang, M. Chinnam, X. Zhang, S.W. Hayward, B.A. Foster, et al., E2f binding-deficient Rb1 protein suppresses prostate tumor progression in vivo. Proc. Natl. Acad. Sci. U. S. A. 108(2), 704–709 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. C. Thangavel, E. Boopathi, Y. Liu, A. Haber, A. Ertel, A. Bhardwaj, et al., RB loss promotes prostate cancer metastasis. Cancer Res. 77(4), 982–995 (2017)

    Article  CAS  PubMed  Google Scholar 

  104. N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism. Cell Metab. 23(1), 27–47 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. J. Floter, I. Kaymak, A. Schulze, Regulation of metabolic activity by p53. Metabolites 7(2), E21 (2017)

    Article  PubMed  CAS  Google Scholar 

  106. B.N. Nicolay, N.J. Dyson, The multiple connections between pRB and cell metabolism. Curr. Opin. Cell Biol. 25(6), 735–740 (2013)

    Article  CAS  PubMed  Google Scholar 

  107. R. Iurlaro, C.L. Leon-Annicchiarico, C. Munoz-Pinedo, Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542, 59–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. M.R. Reynolds, A.N. Lane, B. Robertson, S. Kemp, Y. Liu, B.G. Hill, et al., Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33(5), 556–566 (2014)

    Article  CAS  PubMed  Google Scholar 

  109. E. Blanchet, J.S. Annicotte, S. Lagarrigue, V. Aguilar, C. Clape, C. Chavey, et al., E2F transcription factor-1 regulates oxidative metabolism. Nat. Cell Biol. 13(9), 1146–1152 (2011)

    Article  CAS  PubMed  Google Scholar 

  110. V.G. Sankaran, S.H. Orkin, C.R. Walkley, Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 22(4), 463–475 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. J.B. Hansen, C. Jorgensen, R.K. Petersen, P. Hallenborg, R. De Matteis, H.A. Boye, et al., Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl. Acad. Sci. U. S. A. 101(12), 4112–4117 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. F. Cutruzzola, G. Giardina, M. Marani, A. Macone, A. Paiardini, S. Rinaldo, et al., Glucose metabolism in the progression of prostate cancer. Front. Physiol. 8, 97 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  113. E. Eidelman, J. Twum-Ampofo, J. Ansari, M.M. Siddiqui, The metabolic phenotype of prostate cancer. Front. Oncol. 7, 131 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  114. N. Pertega-Gomes, S. Felisbino, C.E. Massie, J.R. Vizcaino, R. Coelho, C. Sandi, et al., A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 236(4), 517–530 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. N.M. Zacharias, C. McCullough, S. Shanmugavelandy, J. Lee, Y. Lee, P. Dutta, et al., Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci. Rep. 7(1), 16159 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. M. Gacci, G.I. Russo, C. De Nunzio, A. Sebastianelli, M. Salvi, L. Vignozzi, et al., Meta-analysis of metabolic syndrome and prostate cancer. Prostate Cancer Prostatic Dis. 20(2), 146–155 (2017)

    Article  CAS  PubMed  Google Scholar 

  117. K. Esposito, P. Chiodini, A. Capuano, G. Bellastella, M.I. Maiorino, E. Parretta, et al., Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J. Endocrinol. Investig. 36(2), 132–139 (2013)

    Article  CAS  Google Scholar 

  118. Q. Wang, R.A. Hardie, A.J. Hoy, M. van Geldermalsen, D. Gao, L. Fazli, et al., Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol. 236(3), 278–289 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. F.A. Dick, D.W. Goodrich, J. Sage, N.J. Dyson, Non-canonical functions of the RB protein in cancer. Nat. Rev. Cancer 18(7), 442–451 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. C.R. Goding, D. Pei, X. Lu, Cancer: pathological nuclear reprogramming? Nat. Rev. Cancer 14(8), 568–573 (2014)

    Article  CAS  PubMed  Google Scholar 

  121. M. Nakagawa, M. Koyanagi, K. Tanabe, K. Takahashi, T. Ichisaka, T. Aoi, et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26(1), 101–106 (2008)

    Article  CAS  PubMed  Google Scholar 

  122. M. Wernig, A. Meissner, J.P. Cassady, R. Jaenisch, c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2(1), 10–12 (2008)

    Article  CAS  PubMed  Google Scholar 

  123. V. Krizhanovsky, S.W. Lowe, Stem cells: the promises and perils of p53. Nature 460(7259), 1085–1086 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. K. Hochedlinger, Y. Yamada, C. Beard, R. Jaenisch, Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121(3), 465–477 (2005)

    Article  CAS  PubMed  Google Scholar 

  125. C.M. Rudin, S. Durinck, E.W. Stawiski, J.T. Poirier, Z. Modrusan, D.S. Shames, et al., Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44(10), 1111–1116 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. A. Sarkar, K. Hochedlinger, The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1), 15–30 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. M.S. Kareta, L.L. Gorges, S. Hafeez, B.A. Benayoun, S. Marro, A.F. Zmoos, et al., Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16(1), 39–50 (2015)

    Article  CAS  PubMed  Google Scholar 

  128. Y. Liu, B. Clem, E.K. Zuba-Surma, S. El-Naggar, S. Telang, A.B. Jenson, et al., Mouse fibroblasts lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. Cell Stem Cell 4(4), 336–347 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. B.A. Smith, A. Sokolov, V. Uzunangelov, R. Baertsch, Y. Newton, K. Graim, et al., A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl. Acad. Sci. U. S. A. 112(47), E6544–E6552 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. P. Mu, Z. Zhang, M. Benelli, W.R. Karthaus, E. Hoover, C.C. Chen, et al., SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355(6320), 84–88 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. L. Magnaghi-Jaulin, R. Groisman, I. Naguibneva, P. Robin, S. Lorain, J.P. Le Villain, et al., Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391(6667), 601–605 (1998)

    Article  CAS  PubMed  Google Scholar 

  132. K.D. Robertson, S. Ait-Si-Ali, T. Yokochi, P.A. Wade, P.L. Jones, A.P. Wolffe, DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25(3), 338–342 (2000)

    Article  CAS  PubMed  Google Scholar 

  133. A. Brehm, E.A. Miska, D.J. McCance, J.L. Reid, A.J. Bannister, T. Kouzarides, Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667), 597–601 (1998)

    Article  CAS  PubMed  Google Scholar 

  134. S.J. Nielsen, R. Schneider, U.M. Bauer, A.J. Bannister, A. Morrison, D. O’Carroll, et al., Rb targets histone H3 methylation and HP1 to promoters. Nature 412(6846), 561–565 (2001)

    Article  CAS  PubMed  Google Scholar 

  135. S. Gonzalo, M. Garcia-Cao, M.F. Fraga, G. Schotta, A.H. Peters, S.E. Cotter, et al., Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7(4), 420–428 (2005)

    Article  CAS  PubMed  Google Scholar 

  136. M. Garcia-Cao, S. Gonzalo, D. Dean, M.A. Blasco, A role for the Rb family of proteins in controlling telomere length. Nat. Genet. 32(3), 415–419 (2002)

    Article  CAS  PubMed  Google Scholar 

  137. S.X. Skapek, Y.R. Pan, E.Y. Lee, Regulation of cell lineage specification by the retinoblastoma tumor suppressor. Oncogene 25(38), 5268–5276 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. D.E. Montoya-Durango, Y. Liu, I. Teneng, T. Kalbfleisch, M.E. Lacy, M.C. Steffen, et al., Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat. Res. 665(1–2), 20–28 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. A. Sparmann, M. van Lohuizen, Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer. 6(11), 846–856 (2006)

    Article  CAS  PubMed  Google Scholar 

  140. B.P. Coe, K.L. Thu, S. Aviel-Ronen, E.A. Vucic, A.F. Gazdar, S. Lam, et al., Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 8(8), e71670 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. L.R. Bohrer, S. Chen, T.C. Hallstrom, H. Huang, Androgens suppress EZH2 expression via retinoblastoma (RB) and p130-dependent pathways: a potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology 151(11), 5136–5145 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. C.A. Ishak, A.E. Marshall, D.T. Passos, C.R. White, S.J. Kim, M.J. Cecchini, et al., An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64(6), 1074–1087 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. P.J. Vlachostergios, L. Puca, H. Beltran, Emerging variants of castration-resistant prostate cancer. Curr. Oncol. Rep. 19(5), 32 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. E. Hernando, Z. Nahle, G. Juan, E. Diaz-Rodriguez, M. Alaminos, M. Hemann, et al., Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430(7001), 797–802 (2004)

    Article  CAS  PubMed  Google Scholar 

  145. C.E. Isaac, S.M. Francis, A.L. Martens, L.M. Julian, L.A. Seifried, N. Erdmann, et al., The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26(9), 3659–3671 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. R. Velez-Cruz, D.G. Johnson, The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int J Mol Sci, 18(8) (2017)

    Article  PubMed Central  CAS  Google Scholar 

  147. A. L. Manning et al. Suppression of genome instabilityin pRB- deficient cells by enhancement of chromosomecohesion. Mol. Cell 53, 993–1004 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. M. S. Longworth, A. Herr, J. Y. Ji, N. J Dyson. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. 22, 1011–1024 (2008)

    Article  CAS  Google Scholar 

  149. G.A. Pihan, A. Purohit, J. Wallace, R. Malhotra, L. Liotta, S.J. Doxsey, Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61(5), 2212–2219 (2001)

    CAS  PubMed  Google Scholar 

  150. G.A. Pihan, J. Wallace, Y. Zhou, S.J. Doxsey, Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63(6), 1398–1404 (2003)

    CAS  PubMed  Google Scholar 

  151. X. Jin, D. Ding, Y. Yan, H. Li, B. Wang, L. Ma, et al., Phosphorylated RB promotes cancer immunity by inhibiting NF-kappaB activation and PD-L1 expression. Mol. Cell 73(1), 22–35.e6 (2019)

    Article  CAS  PubMed  Google Scholar 

  152. C.A. Ishak, M. Classon, D.D. De Carvalho, Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer. 4(8), 583–597 (2018)

    Article  CAS  PubMed  Google Scholar 

  153. J.M. Wolff, L.T. Brett, A.M. Lessells, F.K. Habib, Analysis of retinoblastoma gene expression in human prostate tissue. Urol. Oncol. 3(5–6), 177–182 (1997)

    Article  CAS  PubMed  Google Scholar 

  154. M.M. Ittmann, R. Wieczorek, Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum. Pathol. 27(1), 28–34 (1996)

    Article  CAS  PubMed  Google Scholar 

  155. M.P. Markey, S.P. Angus, M.W. Strobeck, S.L. Williams, R.W. Gunawardena, B.J. Aronow, et al., Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res. 62(22), 6587–6597 (2002)

    CAS  PubMed  Google Scholar 

  156. M.P. Markey, J. Bergseid, E.E. Bosco, K. Stengel, H. Xu, C.N. Mayhew, et al., Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26(43), 6307–6318 (2007)

    Article  CAS  PubMed  Google Scholar 

  157. J. Lack, M. Gillard, M. Cam, G.P. Paner, D.J. Van der Weele, Circulating tumor cells capture disease evolution in advanced prostate cancer. J. Transl. Med. 15(1), 44 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. H. Beltran, A. Jendrisak, M. Landers, J.M. Mosquera, M. Kossai, J. Louw, et al., The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin. Cancer Res. 22(6), 1510–1519 (2016)

    Article  CAS  PubMed  Google Scholar 

  159. A.W. Wyatt, A.A. Azad, S.V. Volik, M. Annala, K. Beja, B. McConeghy, et al., Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2(12), 1598–1606 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  160. M.G. Oser, R. Fonseca, A.A. Chakraborty, R. Brough, A. Spektor, R.B. Jennings, et al., Cells lacking the RB1 tumor suppressor gene are hyperdependent on Aurora B kinase for survival. Cancer Discov. 9(2), 230–247 (2019)

    Article  PubMed  Google Scholar 

  161. X. Gong, J. Du, S.H. Parsons, F.F. Merzoug, Y. Webster, P.W. Iversen, et al., Aurora-A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9(2), 248–263 (2019)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burkhart, D.L., Morel, K.L., Sheahan, A.V., Richards, Z.A., Ellis, L. (2019). The Role of RB in Prostate Cancer Progression. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_13

Download citation

Publish with us

Policies and ethics