Skip to main content

Well Quasi-orders and the Functional Interpretation

  • Chapter
  • First Online:
Well-Quasi Orders in Computation, Logic, Language and Reasoning

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

The purpose of this article is to study the role of Gödel’s functional interpretation in the extraction of programs from proofs in well quasi-order theory. The main focus is on the interpretation of Nash–Williams’ famous minimal bad sequence construction, and the exploration of a number of much broader problems which are related to this, particularly the question of the constructive meaning of Zorn’s lemma and the notion of recursion over the non-wellfounded lexicographic ordering on infinite sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.mathematik.uni-muenchen.de/~logik/minlog/. Official homepage of Minlog, as of January 2018.

  2. Aschieri, F., & Berardi, S. (2010). Interactive learning-based realizability for Heyting arithmetic with EM1. Logical Methods in Computer Science, 6(3),

    Google Scholar 

  3. Avigad, J., & Feferman, S. (1998). Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss (Ed.), Handbook of proof theory (Vol. 137, pp. 337–405)., Studies in logic and the foundations of mathematics Amsterdam: North Holland.

    Google Scholar 

  4. Berger, U. (2004). A computational interpretation of open induction. In Proceedings of LICS 2004, pp. 326–334. IEEE Computer Society.

    Google Scholar 

  5. Berger, U., & Oliva, P. (2005). Modified bar recursion and classical dependent choice. Lecture Notes in Logic, 20, 89–107.

    Google Scholar 

  6. Ershov, Y. L. (1977). Model \({C}\) of partial continuous functionals. Logic colloquium (pp. 455–467). Amsterdam: North Holland.

    Google Scholar 

  7. Escardó, M., & Oliva, P. (2010). Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2), 127–168.

    Article  Google Scholar 

  8. Escardó, M., & Oliva, P. (2011). Sequential games and optimal strategies. Royal Society Proceedings A, 467, 1519–1545.

    Article  Google Scholar 

  9. Escardó, M., & Oliva, P. (2012). Computing Nash equilibria of unbounded games. In Proceedings of the Turing Centenary Conference, Manchester, vol. 10 of EPiC Series, pp. 53–65.

    Google Scholar 

  10. Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica, 12, 280–287.

    Google Scholar 

  11. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 2, 326–336.

    Article  Google Scholar 

  12. Kleene, S. C. (1959). Countable functionals. In A. Heyting (Ed.), Constructivity in mathematics (pp. 81–100). Amsterdam: North-Holland.

    Google Scholar 

  13. Kohlenbach, U. (2008). Applied proof theory: Proof interpretations and their use in mathematics. Monographs in Mathematics. Springer.

    Google Scholar 

  14. Kreisel, G. (1951). On the interpretation of non-finitist proofs. Part I Journal of Symbolic Logic, 16, 241–267.

    Google Scholar 

  15. Kreisel, G. (1952). On the interpretation of non-finitist proofs, Part II: Interpretation of number theory. Journal of Symbolic Logic, 17, 43–58.

    Article  Google Scholar 

  16. Kreisel, G. (1959). Interpretation of analysis by means of functionals of finite type. In A. Heyting (Ed.), Constructivity in mathematics (pp. 101–128). Amsterdam: North-Holland.

    Google Scholar 

  17. Longley, J., & Normann, D. (2015). Higher-order computability. Theory and Applications of Computability: Springer.

    Google Scholar 

  18. Murthy, C. R. (1990). Extracting constructive content from classical proofs. Ph.D. thesis, Ithaca, New York.

    Google Scholar 

  19. Nash-Williams, C. St, & J. A., (1963). On well-quasi-ordering finite trees. Proceedings of the Cambridge Philosophical Society, 59, 833–835.

    Google Scholar 

  20. Oliva, P. (2006). Understanding and using Spector’s bar recursive interpretation of classical analysis. In A. Beckmann, U. Berger, B. Löwe, and J. V. Tucker, editors, Proceedings of CiE’2006, volume 3988 of LNCS, pp. 423–234.

    Google Scholar 

  21. Powell, T. (2012). Applying Gödel’s Dialectica interpretation to obtain a constructive proof of Higman’s lemma. In Proceedings of Classical Logic and Computation ’12, volume 97 of EPTCS, pp. 49–62, 2012.

    Google Scholar 

  22. Powell, T. (2014). The equivalence of bar recursion and open recursion. Annals of Pure and Applied Logic, 165(11), 1727–1754.

    Article  Google Scholar 

  23. Powell, T. (2016). Gödel’s functional interpretation and the concept of learning. In Proceedings of Logic in Computer Science (LICS 2016), pp. 136–145. IEEE Computer Society.

    Google Scholar 

  24. Raoult, J.-C. (1988). Proving open properties by induction. Information Processing Letters, 29, 19–23.

    Article  Google Scholar 

  25. Scott, D. S. (1970). Outline of a mathematical theory of computation. In 4th Annual Princeton Conference on Information Sciences and Systems, pp. 169–176.

    Google Scholar 

  26. Seisenberger, M. (2003). On the constructive content of proofs. Ph.D. thesis, Ludwig Maximilians Universität München.

    Google Scholar 

  27. Spector, C. (1962). Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker (Ed.), Recursive Function Theory: Proc (pp. 1–27), Symposia in Pure Mathematics, volume 5 Providence, Rhode Island: American Mathematical Society.

    Google Scholar 

  28. Sternagel, C. (2013). Certified Kruskal’s tree theorem. In Proceedings of the 3rd International Conference on Certified Programs and Proofs (CPP ’13), volume 8307 of LNCS, pp. 178–193.

    Google Scholar 

  29. Troelstra, A. S. (1973). Metamathematical investigation of intuitionistic arithmetic and analysis (Vol. 344), Lecture Notes in Mathematics Berlin: Springer.

    Google Scholar 

Download references

Acknowledgements

In developing the ideas of this article I have benefited greatly from numerous illuminating conversations with Ulrich Berger, Paulo Oliva and Monika Seisenberger. Moreover, I am grateful to the anonymous referee, whose extremely detailed review led to a much better version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Powell, T. (2020). Well Quasi-orders and the Functional Interpretation. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_9

Download citation

Publish with us

Policies and ethics