Skip to main content

Conclusion: The Exciting Future of OCT and New Imaging of Retina and Optic Nerve

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

Optical coherence tomography (OCT) has been a major step forward in ophthalmology, enabling us to obtain in vivo images of the retina and optic disc with higher and higher resolution. Since its introduction 20 years ago, in fact, OCT in fact underwent continuous technological advances and further improvements are expected over the next few years. These improvements will help us to investigate the retinal and optic nerve function, in addition to their structure, and should be used by physician in the diagnostic and therapeutic approach not only for eye, but also for brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung W, Kim J, Jeon M, et al. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng. 2011;58:741–4.

    Article  Google Scholar 

  2. Chen DL, Kraus M, Potsaid B. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2014;5:293–311.

    Article  Google Scholar 

  3. Tan O, Liu L, Liu L, Huang D. Nerve fiber flux analysis using wide-field swept-source optical coherence tomography. Transl Vis Sci Technol. 2018;7:16.

    Article  Google Scholar 

  4. Jia Y, Simonett JM, Wang J, et al. Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Invest Ophthalmol Vis Sci. 2017;58:5188–94.

    Article  Google Scholar 

  5. Oberwahrenbrock T, Weinhold M, Mikolajczak J, et al. Reliability of intra-retinal layer thickness estimates. PLoS One. 2015;10:e0137316.

    Article  Google Scholar 

  6. Pinhas A, Linderman R, Mo S, Krawitz BD, et al. A method for age-matched OCT angiography deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries. PLoS One. 2018;13:e0197062.

    Article  Google Scholar 

  7. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express. 2006;14:7821–40.

    Article  Google Scholar 

  8. Huang Y, Zhang Q, Thorell MR, An L, Durbin MK, Laron M, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45:382–9.

    Article  Google Scholar 

  9. Field MG, Elner VM, Puro DG, Feuerman JM, Musch DC, Pop-Busui R, et al. Rapid, non-invasive detection of diabetes-induced retinal metabolic stress. Arch Ophthalmol. 2008;126:934–8.

    Article  Google Scholar 

  10. Field MG, Yang D, Bian ZM, Petty HR, Elner VM. Retinal flavoprotein fluorescence correlates with mitochondrial stress, apoptosis, and chemokine expression. Exp Eye Res. 2011;93:548–55.

    Article  CAS  Google Scholar 

  11. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54(Suppl 1):S204–17.

    Article  CAS  Google Scholar 

  12. Guo L, Cordeiro MF. Assessment of neuroprotection in the retina with DARC. Prog Brain Res. 2008;173:437–50.

    Article  CAS  Google Scholar 

  13. Normando EM, Dehabadi MH, Guo L, Turner LA, Pollorsi G, Cordeiro MF. Real-time imaging of retinal cell apoptosis by confocal scanning laser ophthalmoscopy. Methods Mol Biol. 2015;1254:227–37.

    Article  CAS  Google Scholar 

  14. Mordant DJ, Al-Abboud I, Muyo G, et al. Spectral imaging of the retina. Eye (Lond). 2011;25:309–20.

    Article  CAS  Google Scholar 

  15. Zhang HF, Puliafito CA, Jiao S. Photoacoustic ophthalmoscopy for in vivo retinal imaging: current status and prospects. Ophthalmic Surg Lasers Imaging. 2011;42:S106–15.

    Article  Google Scholar 

  16. Jiao S, Jiang M, Hu J, et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt Express. 2010;18:3967–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Barboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barboni, P., Grzybowski, A. (2020). Conclusion: The Exciting Future of OCT and New Imaging of Retina and Optic Nerve. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics