Skip to main content

Cell Biology of the Tardigrades: Current Knowledge and Perspectives

  • Chapter
  • First Online:
Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

The invertebrate phylum Tardigrada has received much attention for containing species adapted to the most challenging environmental conditions where an ability to survive complete desiccation or freezing in a cryptobiotic state is necessary for persistence. Although research on tardigrades has a long history, the last decade has seen a dramatic increase in molecular biological (“omics”) studies, most of them with the aim to reveal the biochemical mechanisms behind desiccation tolerance of tardigrades. Several other aspects of tardigrade cell biology have been studied, and we review some of them, including karyology, embryology, the role of storage cells, and the question of whether tardigrades are eutelic animals. We also review some of the theories about how anhydrobiotic organisms are able to maintain cell integrity under dry conditions, and our current knowledge on the role of vitrification and DNA protection and repair. Many aspects of tardigrade stress tolerance have relevance for human medicine, and the first transfers of tardigrade stress genes to human cells have now appeared. We expect this field to develop rapidly in the coming years, as more genomic information becomes available. However, many basic cell biological aspects remain to be investigated, such as immunology, cell cycle kinetics, cell metabolism, and culturing of tardigrade cells. Such development will be necessary to allow tardigrades to move from a nonmodel organism position to a true model organism with interesting associations with the current models C. elegans and D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The species referred to Hypsibius dujardini in many studies reviewed in this chapter originates from the same strain/population collected from a pond in England, and has recently been described by Gąsiorek et al. (2018) as a new species, Hypsibius exemplaris, distinguished from the originally described species Hypsibius dujardini. In this chapter, we have chosen to consistently use the new name, H. exemplaris, although the publications referred to use H. dujardini.

References

  • Altiero T, Rebecchi L (2003) First evidence of achiasmatic male meiosis in the water bears Richtersius coronifer and Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hereditas 139:116–120

    Article  PubMed  Google Scholar 

  • Arakawa K (2016) No evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci USA 113(22):E3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa K, Yoshida Y, Tomita M (2016) Genome sequencing of a single tardigrade Hypsibius dujardini individual. Sci Data 3:160063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann H (1920) Mitteilungen zum feineren bau der tardigraden. Zool Anz 52:56–66

    Google Scholar 

  • Beltrán-Pardo EA, Jönsson KI, Wojcik A, Haghdoost S, Bermúdez Cruz RM, Bernal Villegas JE (2013) Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. J Limnol 72(s1):80–91

    Google Scholar 

  • Bertolani R (1970a) Mitosi somatiche e costanza cellular numerica nei Tardigradi. Atti Accad Naz Lincei Rc Ser 8a 48:739–742

    Google Scholar 

  • Bertolani R (1970b) Variabilità numerica cellulare in alcuni tessuti di Tardigradi. Atti Accad Naz Lincei Rc Ser 8a 49:442–446

    Google Scholar 

  • Bertolani R (1994) Tardigrada. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Asexual propagation and reproductive strategies, vol VI. Oxford and IBH, New Delhi, pp 25–37

    Google Scholar 

  • Bertolani R (2001) Evolution of the reproductive mechanisms in tardigrades – a review. Zool Anz 240:247–252

    Article  Google Scholar 

  • Bertolani R, Rebecchi L (2018) Cytologi and cytogenetics. In: Schill RO (ed) Water bears: the biology of tardigrades. Springer, New York, pp 145–161

    Chapter  Google Scholar 

  • Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(6):975–984.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ et al (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108(38):15920–15924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collares-Pereira MJ, Matos I, Morgado-Santos M, Coelho MM (2013) Natural pathways towards polyploidy in animals: the Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet Genome Res 140:97–116

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH (1975) The physiology of cryptobiosis in tardigrades. Mem Ist Idrobiol 32(Suppl):37–59

    Google Scholar 

  • Crowe JH (2008) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  Google Scholar 

  • Crowe JH (2015) Anhydrobiosis: an unsolved problem with applications in human welfare. In: Disalvo EA (ed) Membrane hydration: the role of water in the structure and function of biological membranes. Subcellular biochemistry 71. Springer, Basel, pp 263–280

    Chapter  Google Scholar 

  • Crowe JH, Madin KA (1974) Anhydrobiosis in tardigrades and nematodes. Trans Am Microsc Soc 93:513–524

    Article  Google Scholar 

  • Crowe JH, Carpenter IE, Crowe LM (1998a) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Clegg JS, Crowe LM (1998b) Anhydrobiosis: the water replacement hypothesis. In: Reid DS (ed) The properties of water in foods. Chapman & Hall, New York, pp 440–455

    Chapter  Google Scholar 

  • Cunha A, Azevedo RBR, Emmons SW, Leroi AM (1999) Variable cell number in nematodes. Nature 402(6759):253

    Article  CAS  PubMed  Google Scholar 

  • Czernekova M, Jönsson KI (2016) Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLoS One 11(11):e0164062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czernekova M, Jönsson KI, Chajec L, Student S, Poprawa I (2017) The structure of the desiccated Richtersius coronifer (Richters, 1903). Protoplasma 254(3):1367–1377

    Article  PubMed  Google Scholar 

  • Czernekova M, Janelt K, Student S, Jönsson KI, Poprawa I (2018) A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One 13(8):e0201430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Degma P, Bertolani R, Guidetti R (2018) Actual checklist of Tardigrada species. Ver. 25: 10 05-2014, p 48. http://www.tardigrada.modena.unimo.it/miscellanea/Actual%20checklist%20of%20Tardigrada.pdf. Accessed 7 Nov 2018

  • Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice EM (eds) Microscopic anatomy of invertebrates, Onychophora, Chilopoda and Lesser Protostomata, vol 12. Wiley-Liss, New York, pp 143–183

    Google Scholar 

  • Eibye-Jacobsen J (1997) New observations on the embryology of the Tardigrada. Zool Anz 235:201–216

    Google Scholar 

  • Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz JM, Fahmy K, Kurzchalia TV (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97

    Article  CAS  PubMed  Google Scholar 

  • Förster F, Beisser D, Grohme MA, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Müller T, Schnölzer M, Schill RO, Frohme M, Dandekar T (2012) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinform Biol Insights 6:69–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A 146:621–631

    Article  CAS  Google Scholar 

  • Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and engrailed homologs in tardigrade development. Dev Genes Evol 217:421–433

    Article  CAS  PubMed  Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    Article  CAS  PubMed  Google Scholar 

  • Gąsiorek P, Stec D, Morek W, Michalczyk Ł (2018) An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada). Zootaxa 4415(1):45

    Article  PubMed  Google Scholar 

  • Gilbert JJ (1983) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Oogenesis, oviposition, and oosorption, vol I. Wiley, Chichester, pp 181–209

    Google Scholar 

  • Gross V, Bährle R, Mayer G (2018) Detection of cell proliferation in adults of the water bear Hypsibius dujardini (Tardigrada) via incorporation of a thymidine analog. Tissue Cell 51:77–83

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Kunieda T (2017) DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life 7(2):26

    Article  PubMed Central  CAS  Google Scholar 

  • Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, Enomoto A, Kondo K, Tanaka S, Hara Y, Koshikawa S, Sagara H, Miura T, Yokobori S-I, Miyagawa K, Suzuki Y, Kubo T, Oyama M, Kohara Y, Fujiyama A, Arakawa K, Katayama T, Toyoda A, Kunieda T (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361

    Article  CAS  PubMed  Google Scholar 

  • Hengherr S, Heyer AG, Köhler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in response to dehydration. FEBS J 275:281–288

    Article  CAS  PubMed  Google Scholar 

  • Horikawa DD (2008) The Tardigrade Ramazzottius varieornatus as a model animal for astrobiological studies. Biol Sci Space 22(3):93–98

    Article  Google Scholar 

  • Hyra M, Rost-Roszkowska MM, Student S, Włodarczyk A, Deperas M, Janelt K, Poprawa I (2016) Body cavity cells of Parachela during their active life. Zool J Linnean Soc 178(4):878–887

    Article  Google Scholar 

  • Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766

    Article  PubMed  CAS  Google Scholar 

  • Jönsson KI, Persson O (2010) Trehalose in three species of desiccation tolerant tardigrades. Open Zool J 3:1–5

    Article  CAS  Google Scholar 

  • Jönsson KI, Rebecchi L (2002) Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J Exp Zool 293:578–584

    Article  PubMed  Google Scholar 

  • Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 146:456–460

    Article  PubMed  CAS  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low earth orbit. Curr Biol 18:R729–R731

    Article  PubMed  CAS  Google Scholar 

  • Jönsson KI, Levine EB, Wojcik A, Haghdoost S, Harms-Ringdahl M (2018) Environmental adaptations – radiation tolerance. In: Schill RO (ed) Water bears: the biology of tardigrades. Springer, New York, pp 311–330

    Chapter  Google Scholar 

  • Jørgensen A, Møbjerg N, Kristensen RM (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. J Limnol 66(Suppl 1):77–83

    Article  Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Kubo T, Kunieda T (2015) Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLoS One 10(12):e0144803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci USA 113(18):5053–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisko A, Leroya M, Radman M, Meselson M (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 109(7):2354–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmic M, Richaud M, Cuq P, Frelon S, Galas S (2018) Carbonylation accumulation of the Hypsibius exemplaris anhydrobiote reveals age-associated marks. PLoS One 13(12):e0208617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564

    Article  CAS  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122(1):1–25

    Article  Google Scholar 

  • Madin KAC, Crowe J (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during drying. J Exp Zool 193:335–342

    Article  CAS  Google Scholar 

  • Marcus E (1929) Tardigrada. In: Bronns HG (ed) Klassen und Ordungen des Tierreichs, vol 5, Section 4, Part 3. Akademische Verlagsgesellschaft, Leipzig, pp 1–608

    Google Scholar 

  • Martini E (1923) Die zellkonstanz und ihre beziehungen zu anderen zoologischen vorwürfen. Z Anat Entwicklungsgesch 70(1–3):179–259

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol 202:409–420

    Article  CAS  Google Scholar 

  • Nakhleh J, El Moussawi L, Osta MA (2017) The melanization response in insect immunity. Adv Insect Physiol 52:83–109

    Article  Google Scholar 

  • Neiman M, Beaton MJ, Hessen DO, Jeyasingh PD, Weider LJ (2017) Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev 92(1):234–247

    Article  Google Scholar 

  • Nelson DR, Guidetti R, Rebecchi L (2015) Phylum Tardigrada. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Academic, London, pp 347–380

    Chapter  Google Scholar 

  • Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429

    Article  PubMed  CAS  Google Scholar 

  • Pandita TK, Higashikubo R, Hunt CR (2004) HSP70 and genomic stability. Cell Cycle 3(5):591–592

    Article  CAS  PubMed  Google Scholar 

  • Parfrey LW, Lahr DJG, Katz LA (2008) The dynamic nature of eukaryotic genomes. Mol Biol Evol 25(4):787–794

    Article  CAS  PubMed  Google Scholar 

  • Poprawa I, Hyra M, Rost-Roszkowska MM (2015) Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae). Protoplasma 252:1019–1029

    Article  PubMed  Google Scholar 

  • Rebecchi L (2013) Dry up and survive: the role of antioxidant defences in anhydrobiotic organisms. J Limnol 72(s1):62–72

    Google Scholar 

  • Rebecchi L, Rossi V, Altiero T, Frigieri A, Bertolani R, Menozzi P (2003) Reproductive modes and genetic polymorphism in the tardigrade Richtersius coronifer (Eutardigrada, Macrobiotidae). Invertebr Biol 122(1):19–27

    Article  Google Scholar 

  • Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009a) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039

    Article  CAS  PubMed  Google Scholar 

  • Rebecchi L, Boschini D, Cesari M, Lencioni V, Bertolani R, Guidetti R (2009b) Stress response of a boreo-alpine species of tardigrade, Borealibius zetlandicus (Eutardigrada, Hypsibiidae). J Limnol 68(1):64–70

    Article  Google Scholar 

  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuner A, Hengherr S, Brümmer F, Schill RO (2010) Comparative studies on storage cells in tardigrades during starvation and anhydrobiosis. Curr Zool 56(2):259–263

    Article  Google Scholar 

  • Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121

    Article  PubMed  CAS  Google Scholar 

  • Rosati F (1968) Ricerche di microscopia elettronica sui Tardigradi, 2. I globuli cavitari. Atti Accad Fisiocritici, Siena 17:1439–1452

    CAS  Google Scholar 

  • Schill RO, Jönsson KI, Brümmer F, Pfannkuchen M (2011) Food of tardigrades: a case study to understand food choice, intake and digestion. J Zool Syst Evol Res 49(Suppl 1):66–70

    Article  Google Scholar 

  • Schoenfelder KP, Fox DT (2015) The expanding implications of polyploidy. J Cell Biol 209:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FW, Boothby TC, Giovannini I, Rebecchi L, Jockusch EL, Goldstein B (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Curr Biol 26:224–229

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  • Szymańska B (1994) Interdependence between storage bodies and egg developmental stages in Macrobiotus richtersi Murray, 1911 (Tardigrada). Acta Biol Cracov 36:41–48

    Google Scholar 

  • Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS One 10(2):e0118272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsujimoto M, Imura S, Kanda H (2016) Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years. Cryobiology 72:78–81

    Article  PubMed  Google Scholar 

  • Van Cleave HJ (1932) Eutely or cell constancy in its relation to body size. Q Rev Biol 7(1):59–67

    Article  Google Scholar 

  • Volkmann A, Greven H (1993) Ultrastructural localization of tyrosinase in the tardigrade cuticle. Tissue Cell 25:435–438

    Article  CAS  PubMed  Google Scholar 

  • von Erlanger R (1895) Beiträge zur Morphologie der Tardigraden: I. Zur Embryologie eines Tardigraden: Macrobiotus macronyx Dujardin. Morph Jb 22:491–513

    Google Scholar 

  • von Wenck W (1914) Entwicklungsgeschichtliche Untersuchungen an Tardigraden (Macrobiotus lacustris Duj.). Zool Jb Anat 37:465–514

    Google Scholar 

  • Walsh EJ, Zhang L (1992) Polyploidy and body size variation in a natural population of the rotifer Euchlanis dilatata. J Evol Biol 5:345–353

    Article  Google Scholar 

  • Wang C, Grohme MA, Mali B, Schill RO, Frohme M (2014) Towards decrypting cryptobiosis – analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 9(3):e92663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Węglarska B (1975) Studies on the morphology of Macrobiotus richtersi Murray, 1911. Mem Ist Ital Idrobiol 32:445–464

    Google Scholar 

  • Westh P, Ramløv H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311

    Article  CAS  Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582

    Article  Google Scholar 

  • Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, Ishino K, Komine S, Kunieda T, Tomita M, Blaxter M, Arakawa K (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol 15(7):e2002266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ingemar Jönsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jönsson, K.I., Holm, I., Tassidis, H. (2019). Cell Biology of the Tardigrades: Current Knowledge and Perspectives. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_10

Download citation

Publish with us

Policies and ethics